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535. INEQUALITIES INVOLVING THE AREA OF A QUADRILATERAL
INSCRIBED IN A CONVEX QUADRILATERAL*

M. J. Pelling

1. Let PQRS be inscribed in the convex quadrilateral ABCD with P on AB,
Q on BC etc, and let AP/PB=p, BQ/QC=q etc. It is assumed no two vertices
coincide. The area of a convex polygon with vertices PI' P2, . . . , Pn will be
denoted [PIPz' . .Pn I. Let I DAB I= Ai' IABC I= Az, ! BCD 1=A3, ICDA I= A4"

Then,

ISAPI=~ISABI=
pAl.

p+ 1 (1 +p) (1 +s)

Since IABCD i= ~ (Aj + Az + A3 + A4) it follows,
2

V=IPQRSI=L (~-
p

)Aj fjAj+fzA1+f3A3+f4A4
2 (1 + p) (1 +s)

where the coefficients ft, . . . , f4 depend only on the ratios p, q, r, s.

Theorem 1. V== IPQRS I satisfies the following inequalities:

V;;;;;

[
1 +

(l-Pr)(1-QS)

]
maX(Aj) [1+(1-pj-rl)(1-qj-sj)]max(Aj),

I1 (1 +p)

(2) V~
[

l +
(1-pr) (1-QS)

]
min (Aj)=[l +(1-pj-rj)(1-ql-Sj)] min(Ai)

I1 (1+p)

where Pj =p/(l +p)=AP/AB etc.

(1)

Proof. First, the coefficients fi have the property that J; + jj > 0 for i E {I, 3}
and jE{2, 4}. For since ft=.!._p/(1+p)(l+s) andfz=.!.-q/(1+q)(l+p)

2 2
we have fj +lz=(1 +s+ps+pqs)/(l +p)(l +q)(1 +s»O and the other cases
follow similarly.

Suppose now that p, q, r, s are fixed, that max (Aj) = k, and that V is maxi-
mised for Ai subject only to this condition. We show that then all the Ai must
be equal to k. Obviously one must be, say A4' If Az<k then since geome-
trically Al + A3 = A1 + A4 one of Ai' A3 is less than k, say Aj <k. But II + f1 > 0
so that V could be increased if Ai' Az were replaced by Aj + x, Az + x, for a
suitably small x> O. So Az = k which implies Aj = A3 = k.

'" Presented May 29, 1975 by A. OPPENHEIM and O. BOTTEMA.
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Thus V is maximised only when Al = A2 = A3 = A4 = k so that

V =(fl + f2 + f3 + f4) k.

A computation shows L.,t; = 1 + (I - pr) (I - qs)j TI(I + p) whence (1) fol-
lows. (2) can be proved similarly by minimising V subject to min (Ai) = k and
one finds again that Al = . . . = A4 = k. Q.E.D.

Corollary (a). Equality holds in (I) or (2) if and only if all Ai are equal i. e. if
and only if ABCD is a parallelogram.

Corollary (b). From (I) it follows that if pqrs = 1 then V;;:;max (AJ with equa-
lity if and only if ABCD is a parallelogram and pr = qs = I and from (2) if

pr = qs then V;s min (Ai) with equality if and only if ABCD is a parallelogram
and pr = qs = 1. The condition pqrs = I can be expressed geometricaly a simple
application of Menelaus' theorem shews it is equivalent to SP, RQ meeting on
DB (or equally PQ, SR meeting on AC).

2. The plane section of largest area of a tetrahedron

Several proofs have been published of the following theorem ([1], [2], [3])
but a proof based on the corollary to (1) above appears to be new.

Theorem 2. The plane section of largest area of a tetrahedron is a face.

Proof. Let the tetrahedron be ABCD with largest face area f and let W
be a plane section, of area IW I. If W is triangular and not a face then IWI
could be increased by moving a vertex of W along an edge of ABCD until it
coincided with a vertex of the latter. Thus W must already be a face.

If W is quadrilateral let it meet AB in P, BC in Q, CD in R, DA in Sand
let AP /PB =p. . .DS /SA = s. Let ABCD be projected perpendicularly onto W,
into A' B' C'D'. The inequality

(3) iWi<max(IA'B'C'[, IB'C'D'I, IC'D'A'I, ID'A'B'I)

;;:;max (I ABC [ , . . . , IDAB [) = f

is easily seen to hold in all cases of the resulting configuration except possibly
in the case when A' B' C'D' (in that order) forms a convex quadrilateral. In
that case we have by similar triangles that p=AP/PB=A'P/PB'=AA'/BB' so
that pqrs = 1 and then (3) follows when IA' B' C' I

'
. . , ID' A' B' I are not all

equal by applying corollary (b) to theorem 1 to the quadrilateral PQRS inscribed
in A'B'C'D'. Since one of the faces of ABCD must have larger area than its
projection it follows IWI< f in all cases. Q.E.D.

The analogue of theorem 2 is true in 4 dimensions ([3]) although false
for higher dimensions ([3], [4]) and analogously to the inequality used in the
proof above there is an inequality in 3-dimensions for a triangular prism
inscribed in a triangular faced hexahedron. This configuration can arise when
one projects a 4-simplex into a solid section of it. More precisely let XYZTU
be the hexahedron, with faces TXY, TYZ, TZX, UXY, UYZ, UZX and let
ABCDEF be the prism with end faces ABC, DEF where A, B, C, D, E, F lie
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resp<:ctivly on UX, UY, UZ, TX, TY, TZ. Let UAjAX=a, UBjBY=b, UCjCZ-c,
XDjDT=d, YE/ET=e, ZFjFT=/ and suppose that ad=be=cf (as must in
general be so if EDAB etc are to be complanar). Let V = IABCDEFI, VI = 1UYZT I,
V2=! UZXT!, V3 = IUXYTI, V4= IUXYZI, VS= 1TXYZ I. Then V<max (V;).
This can be praved by the same kind of methcd as was used in proving theorem 1.

NOTE. The author is grateful for several remarks of Prof. O. BOTTEMAwhich
have been incorporated into the proof of Theorem I.
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