Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. № 498-No 541 (1975), 185-187.
534.

A PROBLEM ABOUT TAYLOR'S THEOREM*

M. J. Pelling

1. Let a real valued C^{∞} function f be defined in the interval $[0, x]$ so that by TAYLOR's theorem for every $n=1,2, \ldots$

$$
\begin{equation*}
f(x)=\sum_{k=0}^{n-1} f^{(k)}(0) x^{k} / k!+f^{(n)}\left(t_{n}\right) x^{n} / n!, \quad 0<t_{n}<x . \tag{T}
\end{equation*}
$$

When is it possible to choose the sequence $\left\{t_{n}\right\}$ so that $\lim \inf t_{n}=0$ (this was posed as an unsolved problem in the Amer. Math. Monthly 81 (1974), 1121 by J. A. Eidswick). In general this is not possible as the example $f(x)=0, x \leqq 1$; $f(x)=\exp \left(-(x-1)^{-2}\right), x>1$, with $x=2$ shows but in two cases of interest it can be done.

These are when f is a convergent power series and when f and all its derivatives vanish at 0 but f is not identically zero in any interval $[0, a], a>0$.
2. Theorem 1. Let f be a power series with radius of convergence (r.c.) $\geqq R>x$. Then there is a monotonic increasing function $b(x)$, independent of R, defined on $(0,1)$ such that t_{n} can be chosen with

$$
0<t_{n}<R b(x / R) /(n+1)
$$

for infinitely many n.
Proof. If f is a polynomial the theorem is trivial. Otherwise, suppose first that $f(x)=\sum c_{n} x^{n}$ where $c_{n} \rightarrow 0$ and $0<x<1$. Substituting in (T)

$$
\begin{equation*}
c_{n+1} x+c_{n+2} x^{2}+\cdots=(n+1) c_{n+1} t_{n}+\binom{n+2}{2} c_{n+2} t_{n}^{2}+\cdots \tag{A}
\end{equation*}
$$

Since $c_{n} \rightarrow 0$ there are infinitely many n such that $\left|c_{n+1}\right| \geqq\left|c_{n+k}\right|$ all $k \geqq 1$, and assuming this (A) can be written,

$$
\begin{align*}
g(x) & \equiv x+d_{2} x^{2}+d_{3} x^{3}+\cdots \\
& =y+d_{2}(n+1)^{-2}\binom{n+2}{2} y^{2}+\cdots \equiv F\left(n, d_{i}, y\right) \tag{B}
\end{align*}
$$

where $t_{n}=y /(n+1)$ and $d_{k}=c_{n+k} / c_{n+1}$ with $\left|d_{k}\right| \leqq 1$, all $k \geqq 2$.
Lemma. Let $F(y)=y+d_{2} y^{2} / 2!+d_{3} y^{3} / 3!+\cdots$ where d_{i} are arbitrary but satisfy $\left|d_{i}\right| \leqq 1$ for all i. Then there exist functions $\delta(x)>0$ and $b_{1}(x)>0$ not depending on the d_{i} such that the equations

$$
F(y)=g(x)+\delta(x) \text { and } F(y)=g(x)-\delta(x)
$$

have solutions for y in $\left(0, b_{1}(x)\right)$.

[^0]Proof. The proof depends on $g(x)$ being the Laplace transform $p \int_{0}^{\infty} e^{-p t} F(t) \mathrm{d} t$ where $p=1 / x$. For all $y \geqq 0,2 y+1-e^{y} \leqq F(y) \leqq e^{y}-1$ so that

$$
0.09 \simeq \alpha=2(1 / 10)+1-e^{1 / 10} \leqq F(1 / 10) \leqq e^{1 / 10}-1 \simeq 0.11
$$

and $F(\log 2) \geqq 2 \log 2+1-2 \simeq 0.39$. Also $F(0)=0$.
Choose $\beta>0$ so that $F(y) \leqq e^{y}-1<\frac{1}{2} \alpha$ in $[0, \beta]$ and set

$$
J_{1}=\int_{0}^{\beta} p e^{-p^{t}} \frac{1}{2} \alpha \mathrm{~d} t ; \quad J_{2}=\int_{0}^{\beta} p e^{-p^{t}}\left(2 t+1-e^{t}\right) \mathrm{d} t
$$

where $p=1 / x$.
Put $\delta(x)=\min \left(\frac{1}{2} J_{1}, \frac{1}{2} J_{2}, 1 / 20\right)$. There are now three cases:
Case 1: $\delta(x)<g(x) \leqq \alpha$. Then $F(y)=g(x)-\delta(x)$ has a solution in $(0,1 / 10)$ and $F(y)=g(x)+\delta(x)$ in $(0, \log 2)$.
Case 2: $g(x)>\alpha$. Suppose $F(y)<g(x)+\delta(x)$ in $(0, k)$. Then,

$$
\begin{aligned}
g(x) & =\int_{0}^{\infty} p e^{-p^{t}} F(t) \mathrm{d} t \\
& \leqq \int_{0}^{\beta} p e^{-p^{t}} F(t) \mathrm{d} t+\int_{\beta}^{k} p e^{-p^{t}}(g(x)+\delta(x)) \mathrm{d} t+\int_{k}^{\infty} p e^{-p^{t}}\left(e^{t}-1\right) \mathrm{d} t \\
& \leqq \int_{0}^{\beta} p e^{-p^{t}} \frac{1}{2} \alpha \mathrm{~d} t-\int_{0}^{\beta} p e^{-p^{t}}(g(x)+\delta(x)) \mathrm{d} t+\int_{k}^{\infty} p e^{-p^{t}}\left(e^{t}-1\right) \mathrm{d} t \\
& +\int_{0}^{\infty} p e^{-p^{t}}(g(x)+\delta(x)) \mathrm{d} t-\int_{0}^{\beta} p e^{-p^{t}}\left(g(x)+\delta(x)-\frac{1}{2} \alpha\right) \mathrm{d} t \\
& \leqq g(x)+\delta(x)-\int_{0}^{\beta} p e^{-p^{t}} \frac{1}{2} \alpha \mathrm{~d} t+\int_{k}^{\infty} p e^{-p^{t}}\left(e^{t}-1\right) \mathrm{d} t \\
& \leqq g(x)-\frac{1}{2} J_{1}+\int_{k}^{\infty} p e^{-p^{t}}\left(e^{t}-1\right) \mathrm{d} t
\end{aligned}
$$

which is contradictory if $k \geqq k_{0}(x)$ where $k_{0}(x)$ does not depend on the d_{i}. So $F(y)=g(x)+\delta(x)$ must have a solution in $\left(0, k_{0}(x)\right)$ and since $g(x)-\delta(x)>0$ so also must $F(y)=g(x)-\delta(x)$.
Case 3: $g(x) \leqq \delta(x)$. Suppose that $F(y)>g(x)-\delta(x)$ in $(0, k)$. Then,

$$
g(x)=\int_{0}^{\infty} p e^{-p^{t}} F(t) \mathrm{d} t
$$

$$
\begin{aligned}
& \geqq \int_{0}^{\beta} p e^{-p^{t}}\left(2 t+1-e^{t}\right) \mathrm{d} t+\int_{\beta}^{k} p e^{-p^{t}}(g(x)-\delta(x)) \mathrm{d} t+\int_{k}^{\infty} p e^{-p^{t}}\left(2 t+1-e^{t}\right) \mathrm{d} t \\
& \geqq J_{2}+\int_{0}^{\infty} p e^{-p t}(g(x)-\delta(x)) \mathrm{d} t+\int_{k}^{\infty} p e^{-p^{t}}\left(2 t+1-e^{t}\right) \mathrm{d} t \\
& \geqq g(x)+\frac{1}{2} J_{2}+\int_{k}^{\infty} p e^{-p t}\left(2 t+1-e^{t}\right) \mathrm{d} t
\end{aligned}
$$

which is contradictory if $k \geqq k_{1}(x)$ where $k_{1}(x)$ does not depend on the d_{i}. So $F(y)=g(x)-\delta(x)$ must have a solution in ($0, k_{1}(x)$) and evidently so must $F(y)=g(x)+\delta(x)$ if $g(x)+\delta(x) \leqq 0$. Otherwise $0<g(x)+\delta(x) \leqq 2 \delta(x) \leqq 1 / 10$ so this equation has a solution in $(0, \log 2)$.

Thus it suffices to take $\delta(x)$ as above and $b_{1}(x)=\max \left(\log 2, k_{0}(x), k_{1}(x)\right)$ where $b_{1}(x)$ can obviously be chosen monotonic increasing in (0,1). This concludes the proof of the lemma.

Next, as $n \rightarrow \infty$ (regarding d_{i} as independent of n), $F\left(n, d_{i}, y\right) \rightarrow F(y)$ uniformly in any interval $\{0, b]$ and uniformly with respect to the d_{i} subject to $\left|d_{i}\right| \leqq 1$. So if $F\left(y_{1}\right)=g(x)+\delta(x)$ and $F\left(y_{2}\right)=g(x)-\delta(x)$ where $y_{1}, y_{2} \in\left(0, b_{1}(x)\right)$ then for $n \geqq n_{0}(x)$ independent of $d_{i} F\left(n, d_{i}, y\right)=g(x)$ has a solution y between y_{1} and y_{2} and so in $\left(0, b_{1}(x)\right)$. Thus for infinitely many n we may take $0<t_{n}<b_{1}(x) /(n+1)$.

If now r.c. $\geqq 1$ and $0<x<1$ but not necessarily $c_{n} \rightarrow 0$ then a change of scale shows that if $\lambda>1, \lambda x<1$ then $0<t_{n}<\lambda^{-1} b_{1}(\lambda x) /(n+1)$ for infinitely many n. Taking $\lambda=1+\frac{1}{2}(1-x)$ and putting $b(x)=b_{1}(\lambda x)$ implies that if r.c. $\geqq 1$ Δy between and $0<x<1$ then $0<t_{n}<b(x) /(n+1)$ for infinitely many n where $b(x)$ is monotonic increasing in (0,1). Another scale change then establishes the theorem for r.c. $\geqq R$ and $0<x<R$.

Theorem 2. Let $f(0)=f^{\prime}(0)=\cdots=f^{(k)}(0)=0$ for all k. Then either $\left\{t_{n}\right\}$ can be chosen so that $t_{n} \rightarrow 0$ or else $f(x) \equiv 0$ in $[0, a]$ for some $a>0$.

Proof. Assume $f(x)>0$ (the cases $f(x)=0$ and $f(x)<0$ can be dealt with by similar arguments). Then $f(x)=f^{(n)}\left(t_{n}\right) x^{n} / n$! and if for all choices of t_{n}, $\limsup t_{n} \geqq 2 a>0$ we have $f^{(n)}(t)<n!f(x) x^{-n}$ for $0 \leqq t \leqq a$ and infinitely many n. Repeated integration then yields $f(t)<f(x) x^{-n} t^{n}$ for infinitely many n so that if $0 \leqq t \leqq a<x$ then $f(t) \leqq 0$. Similarly one finds $f^{\prime}(t)<n f(x) x^{-n} t^{n-1}$ for infinitely many n whence in $[0, a] f^{\prime}(t) \leqq 0$. Continuing we deduce $f^{(k)}(t) \leqq 0$ for all $k \geqq 0$ and t in $[0, a]$ so that by Bernstein's theorem $f(x) \equiv 0$ in $[0, a]$.
3. In conclusion we ask whether there are any other simple classes of functions for which similar theorems can be proved, and in particular raise the question of what happens when x is an end point of the interval of convergence of a power series, suitable conditions for the applicability of Taylor's theorem being assumed to hold.

Department of Mathematics
University of Benin
P.M.B. 1154

Benin City
Nigeria.

[^0]: * Presented May 29, 1975 by A. Oppenheim.

