UNIV. BEOGRAD. PUBL. ELEKTROTEHN. FAK. Ser. Mat. Fiz. № 498-№ 541 (1975), 185-187.

534. A PROBLEM ABOUT TAYLOR'S THEOREM*

M. J. Pelling

1. Let a real valued C^{∞} function f be defined in the interval [0, x] so that by TAYLOR's theorem for every n = 1, 2, ...

(T)
$$f(x) = \sum_{k=0}^{n-1} f^{(k)}(0) x^k / k! + f^{(n)}(t_n) x^n / n!, \ 0 < t_n < x.$$

When is it possible to choose the sequence $\{t_n\}$ so that $\liminf t_n = 0$ (this was posed as an unsolved problem in the Amer. Math. Monthly **81** (1974), 1121 by J. A. EIDSWICK). In general this is not possible as the example f(x) = 0, $x \le 1$; $f(x) = \exp(-(x-1)^{-2})$, x > 1, with x = 2 shows but in two cases of interest it can be done.

These are when f is a convergent power series and when f and all its derivatives vanish at 0 but f is not identically zero in any interval [0, a], a > 0.

2. Theorem 1. Let f be a power series with radius of convergence $(r.c.) \ge R > x$. Then there is a monotonic increasing function b(x), independent of R, defined on (0, 1) such that t_n can be chosen with

$$0 < t_n < Rb(x/R)/(n+1)$$

for infinitely many n.

Proof. If f is a polynomial the theorem is trivial. Otherwise, suppose first that $f(x) = \sum c_n x^n$ where $c_n \to 0$ and 0 < x < 1. Substituting in (T)

(A)
$$c_{n+1}x + c_{n+2}x^2 + \cdots = (n+1)c_{n+1}t_n + {\binom{n+2}{2}}c_{n+2}t_n^2 + \cdots$$

Since $c_n \to 0$ there are infinitely many *n* such that $|c_{n+1}| \ge |c_{n+k}|$ all $k \ge 1$, and assuming this (A) can be written,

(B)
$$g(x) \equiv x + d_2 x^2 + d_3 x^3 + \cdots$$
$$= y + d_2 (n+1)^{-2} {\binom{n+2}{2}} y^2 + \cdots \equiv F(n, d_i, y)$$

where $t_n = y/(n+1)$ and $d_k = c_{n+k}/c_{n+1}$ with $|d_k| \le 1$, all $k \ge 2$.

Lemma. Let $F(y) = y + d_2 y^2/2! + d_3 y^3/3! + \cdots$ where d_i are arbitrary but satisfy $|d_i| \leq 1$ for all *i*. Then there exist functions $\delta(x) > 0$ and $b_1(x) > 0$ not depending on the d_i such that the equations

$$F(y) = g(x) + \delta(x)$$
 and $F(y) = g(x) - \delta(x)$

have solutions for y in $(0, b_1(x))$.

^{*} Presented May 29, 1975 by A. OPPENHEIM.

Proof. The proof depends on g(x) being the LAPLACE transform $p \int_{0}^{\infty} e^{-pt} F(t) dt$

where p = 1/x. For all $y \ge 0$, $2y + 1 - e^y \le F(y) \le e^y - 1$ so that

 $0.09 \simeq \alpha = 2 (1/10) + 1 - e^{1/10} \le F(1/10) \le e^{1/10} - 1 \simeq 0.11$

and $F(\log 2) \ge 2 \log 2 + 1 - 2 \simeq 0.39$. Also F(0) = 0.

Choose $\beta > 0$ so that $F(y) \le e^y - 1 < \frac{1}{2} \alpha$ in $[0, \beta]$ and set

$$J_1 = \int_0^\beta p e^{-pt} \frac{1}{2} \alpha \, dt; \quad J_2 = \int_0^\beta p e^{-pt} \left(2 t + 1 - e^t\right) dt$$

where p = 1/x.

Put $\delta(x) = \min\left(\frac{1}{2}J_1, \frac{1}{2}J_2, 1/20\right)$. There are now three cases:

Case 1: $\delta(x) < g(x) \le \alpha$. Then $F(y) = g(x) - \delta(x)$ has a solution in (0, 1/10) and $F(y) = g(x) + \delta(x)$ in (0, log 2).

Case 2: $g(x) > \alpha$. Suppose $F(y) < g(x) + \delta(x)$ in (0, k). Then,

$$g(x) = \int_{0}^{\infty} pe^{-pt} F(t) dt$$

$$\leq \int_{0}^{\beta} pe^{-pt} F(t) dt + \int_{\beta}^{k} pe^{-pt} (g(x) + \delta(x)) dt + \int_{k}^{\infty} pe^{-pt} (e^{t} - 1) dt$$

$$\leq \int_{0}^{\beta} pe^{-pt} \frac{1}{2} \alpha dt - \int_{0}^{\beta} pe^{-pt} (g(x) + \delta(x)) dt + \int_{k}^{\infty} pe^{-pt} (e^{t} - 1) dt$$

$$+ \int_{0}^{\infty} pe^{-pt} (g(x) + \delta(x)) dt - \int_{0}^{\beta} pe^{-pt} (g(x) + \delta(x) - \frac{1}{2} \alpha) dt$$

$$\leq g(x) + \delta(x) - \int_{0}^{\beta} pe^{-pt} \frac{1}{2} \alpha dt + \int_{k}^{\infty} pe^{-pt} (e^{t} - 1) dt$$

$$\leq g(x) - \frac{1}{2} J_{1} + \int_{0}^{\infty} pe^{-pt} (e^{t} - 1) dt$$

which is contradictory if $k \ge k_0(x)$ where $k_0(x)$ does not depend on the d_i . So $F(y) = g(x) + \delta(x)$ must have a solution in $(0, k_0(x))$ and since $g(x) - \delta(x) > 0$ so also must $F(y) = g(x) - \delta(x)$.

Case 3: $g(x) \le \delta(x)$. Suppose that $F(y) > g(x) - \delta(x)$ in (0, k). Then, $g(x) = \int_{0}^{\infty} p e^{-pt} F(t) dt$

$$\geq \int_{0}^{\beta} p e^{-pt} \left(2t + 1 - e^{t} \right) dt + \int_{\beta}^{k} p e^{-pt} \left(g(x) - \delta(x) \right) dt + \int_{k}^{\infty} p e^{-pt} \left(2t + 1 - e^{t} \right) dt$$

$$\geq J_{2} + \int_{0}^{\infty} p e^{-pt} \left(g(x) - \delta(x) \right) dt + \int_{k}^{\infty} p e^{-pt} \left(2t + 1 - e^{t} \right) dt$$

$$\geq g(x) + \frac{1}{2} J_{2} + \int_{k}^{\infty} p e^{-pt} \left(2t + 1 - e^{t} \right) dt$$

which is contradictory if $k \ge k_1(x)$ where $k_1(x)$ does not depend on the d_i . So $F(y) = g(x) - \delta(x)$ must have a solution in $(0, k_1(x))$ and evidently so must $F(y) = g(x) + \delta(x)$ if $g(x) + \delta(x) \le 0$. Otherwise $0 < g(x) + \delta(x) \le 2\delta(x) \le 1/10$ so this equation has a solution in $(0, \log 2)$.

Thus it suffices to take $\delta(x)$ as above and $b_1(x) = \max(\log 2, k_0(x), k_1(x))$ where $b_1(x)$ can obviously be chosen monotonic increasing in (0, 1). This concludes the proof of the lemma.

Next, as $n \to \infty$ (regarding d_i as independent of n), $F(n, d_i, y) \to F(y)$ uniformly in any interval [0, b] and uniformly with respect to the d_i subject to $|d_i| \le 1$. So if $F(y_1) = g(x) + \delta(x)$ and $F(y_2) = g(x) - \delta(x)$ where $y_1, y_2 \in (0, b_1(x))$ then for $n \ge n_0(x)$ independent of $d_i F(n, d_i, y) = g(x)$ has a solution y between y_1 and y_2 and so in $(0, b_1(x))$. Thus for infinitely many n we may take $0 < t_n < b_1(x)/(n+1)$.

If now r.c. ≥ 1 and 0 < x < 1 but not necessarily $c_n \to 0$ then a change of scale shows that if $\lambda > 1$, $\lambda x < 1$ then $0 < t_n < \lambda^{-1} b_1 (\lambda x)/(n+1)$ for infinitely many *n*. Taking $\lambda = 1 + \frac{1}{2}(1-x)$ and putting $b(x) = b_1(\lambda x)$ implies that if r.c. ≥ 1 Δy between and 0 < x < 1 then $0 < t_n < b(x)/(n+1)$ for infinitely many *n* where b(x) is monotonic increasing in (0, 1). Another scale change then establishes the theorem for r.c. $\geq R$ and 0 < x < R.

Theorem 2. Let $f(0) = f'(0) = \cdots = f^{(k)}(0) = 0$ for all k. Then either $\{t_n\}$ can be chosen so that $t_n \to 0$ or else $f(x) \equiv 0$ in [0, a] for some a > 0.

Proof. Assume f(x) > 0 (the cases f(x) = 0 and f(x) < 0 can be dealt with by similar arguments). Then $f(x) = f^{(n)}(t_n) x^n/n!$ and if for all choices of t_n , lim sup $t_n \ge 2a > 0$ we have $f^{(n)}(t) < n! f(x) x^{-n}$ for $0 \le t \le a$ and infinitely many n. Repeated integration then yields $f(t) < f(x) x^{-n} t^n$ for infinitely many n so that if $0 \le t \le a < x$ then $f(t) \le 0$. Similarly one finds $f'(t) < n f(x) x^{-n} t^{n-1}$ for infinitely many n whence in $[0, a] f'(t) \le 0$. Continuing we deduce $f^{(k)}(t) \le 0$ for all $k \ge 0$ and t in [0, a] so that by BERNSTEIN's theorem f(x) = 0 in [0, a].

3. In conclusion we ask whether there are any other simple classes of functions for which similar theorems can be proved, and in particular raise the question of what happens when x is an end point of the interval of convergence of a power series, suitable conditions for the applicability of TAYLOR's theorem being assumed to hold.

Department of Mathematics University of Benin P.M.B. 1154 Benin City Nigeria.