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533. SOME INEQUALITIES RELATED TO A TRIANGLE*

Branko M. Milisavljevic

This Note is due to an undergraduated student of the Technical Faculty, Novi Sad.

Editorial Committee

In this Note we shall prove some inequalities for a triangle. We shall use
the same notatios as in [1].

Theorem 1. In every triangle

7Rr-2r2 ",b+c 2R'+Rr+2r'
<L..,-<Rr - a = Rr '

with equality if and only if the triangle is equilateral.

Proof. Since
'2,b+c

=
s2-2Rr+r2

a 2Rr'
in virtue of (see [1], 5.9)

(1) 16 Rr - 5 r2~ S2~ 4 R2 + 4Rr + 3 r2,

where equality occurs if and only if the triangle is equilateral, we obtain the
statement of Theorem 1.

b+c
REMARK.Since '2, a (hb+ he)~ 2F '2,-, from Theorem 1, inequalities

a

follow, which are sharper than inequalities obtained in [2].

Theorem 2. For every triangle, inequalities

(2)
R2+3Rr+2r2 s-a 6R

<'2,-<2R2+3Rr+2r2 - b+c = 9R-2r'

hold. The equality is valid if and only if the triangle is equilateral.

Proof. From the identity

'"
s-a

= -~ (1 +
2r (3 R + 2r) )L..,b+c 2 s2+r(2R+r)'

and on the basis of (1), inequalities (2) follow.
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Theorem 3. In every triangle

where equality holds if and only if the tiringle is equilateral.

Proof. Since
R+2r 2
-2-

2Rr - R
and R+2r <~

2Rr = r '
from identity

2: ~=
R+2r

wa2 2Rr

the statement of the theorem follows.

Theorem 4. For every triangle inequalities

(3)

are valid.

Proof. Since wa~ha, wb~hb, wc~hc and 2:ha~9r, the first inequality (3)
directly follows.

On the basis of identities
2

"wa - 8 R"
s-a

-,;;- S L.
(b+e)2

it follows one after the other

and 2:s-a =
4R+~

be 2sR'

W 2 s-a
2:-h

a
~8sR2:-=4R+r.

a 4be

Thereby the second inequality in (3) is proved, too.
Since in all the above inequalities, equality holds if and only if the tri-

angle is equilateral, it follows that in (3) equality holds if and only if the tri-
angle is equilateral.

Theorem 5. In every triangle
aWa+bwb+cwc~6sr.

Equality holds if and only if the triangle is equilateral.

Proof. On the basis of inequalities wa~ha, wb;;;;,hb,wc~hc' where equality
holds if and only if the triangle is equilateral, we get

2: awa;;;;,2:aha=2:a
2F

=6sr,
a

is proved.

triangle

6 '"
V3" 2sr~Lama~TL.a .

whereby the theorem

Theorem 6. For every

(4)

Equality holds if and only if the triangle is equilateral.
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Proof. The first inequality is proved in the same way as the statement of
Theorem 5.

On the basis of CAUCHy-SCHWARZinequality, we have

(5) Lama~(L a2Y/2 (L m})'/2.

Since L ma2= ~ L a2 from (5) the other inequality in (4) follows, whereby the
4

theorem is proved.

COMMENTS BY R. R. JANIC

(6)

If the triangle is non-obtuse then (see [3])

S2~ 2 R2 + 8 Rr + 3 r2.

d L
b+c s2-2Rr+r2Using this inequality an - = we obtain

a 2Rr'
R2 + 3 Rr + 2 r2

:S
"

~+ c
,

Rr £:., a

1.e., if the triangle is non-obtuse theo the following inequalities are valid

R2+3Rr+2r2 ~"b+c ~ 2R2+Rr+2r2

Rr - L.., a - Rr

which are sharper than inequalities mentioned in Theorem 1.
20 In the same way we obtain

s-a R2+8Rr+4r2Lb+c~2R2+lORr+4r2

which is sharper than the right inequality in (2).
30 Since (see [4])

ma
~

(b+C)2
~ 1,

Wa 4bc
we have

(7)

Similarly
(8)

Add:r.g (7) and (8) we get

L awa~ Lama,

Therefore

The previous inequalities can be written in the symmetrical form, i.e.

6 rs~ L awa~ L ama~ 3 Rs.
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Let Pa, Pb, p" be the distances of the circumcenue from the sides
BC, CA, AB respectively. Then

which implies

Since

hPb = R2 sin 2 ~, ep
c = R2 sin 2 y

and (see [1] 2.4. p. 18)
.

2
.

2 R .
2

. .
R' a+b+c

sm lX+sm r-+sm y;;;;sm lX+sm r-+sm y=~

we obtain
ama+hmb+ em;;;;2 Rs+Rs= 3 Rs.
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