Univ. Beograd. Publ. Elektrotehn. Fak.
Ser. Mat. Fiz. № 498—No 541 (1975), 181—184.

533. SOME INEQUALITIES RELATED TO A TRIANGLE*

Branko M. Milisavljević

This Note is due to an undergraduated student of the Technical Faculty, Novi Sad.

Editorial Committee
In this Note we shall prove some inequalities for a triangle. We shall use the same notatios as in [1].
Theorem 1. In every triangle

$$
\frac{7 R r-2 r^{2}}{R r} \leqq \sum \frac{b+c}{a} \leqq \frac{2 R^{2}+R r+2 r^{2}}{R r}
$$

with equality if and only if the triangle is equilateral.
Proof. Since

$$
\sum \frac{b+c}{a}=\frac{s^{2}-2 R r+r^{2}}{2 R r}
$$

in virtue of (see [1], 5.9)

$$
\begin{equation*}
16 R r-5 r^{2} \leqq s^{2} \leqq 4 R^{2}+4 R r+3 r^{2} \tag{1}
\end{equation*}
$$

where equality occurs if and only if the triangle is equilateral, we obtain the statement of Theorem 1.

Remark. Since $\sum a\left(h_{b}+h_{c}\right)=2 F \sum \frac{b+c}{a}$, from Theorem 1, inequalities

$$
\frac{2 F\left(7 R r-2 r^{2}\right)}{R r} \leqq \sum a\left(h_{c}+h_{b}\right) \leqq \frac{2 F\left(2 R^{2}+R r+2 r^{2}\right)}{R r},
$$

follow, which are sharper than inequalities obtained in [2].
Theorem 2. For every triangle, inequalities

$$
\begin{equation*}
\frac{R^{2}+3 R r+2 r^{2}}{2 R^{2}+3 R r+2 r^{2}} \leqq \sum \frac{s-a}{b+c} \leqq \frac{6 R}{9 R-2 r} \tag{2}
\end{equation*}
$$

hold. The equality is valid if and only if the triangle is equilateral.
Proof. From the identity

$$
\sum \frac{s-a}{b+c}=\frac{1}{2}\left(1+\frac{2 r(3 R+2 r)}{s^{2}+r(2 R+r)}\right),
$$

and on the basis of (1), inequalities (2) follow.

[^0]Theorem 3. In every triangle

$$
\frac{2}{R} \leqq \sum \frac{h_{a}}{w_{a}^{2}} \leqq \frac{1}{r},
$$

where equality holds if and only if the tiringle is equilateral.
Proof. Since

$$
\frac{R+2 r}{2 R r} \geqq \frac{2}{R} \quad \text { and } \quad \frac{R+2 r}{2 R r} \leqq \frac{1}{r},
$$

from identity

$$
\sum \frac{h_{a}}{w_{a}^{2}}=\frac{R+2 r}{2 R r}
$$

the statement of the theorem follows.
Theorem 4. For every triangle inequalities

$$
\begin{equation*}
9 r \leqq \sum \frac{w_{a}^{2}}{h_{a}} \leqq 4 R+r \tag{3}
\end{equation*}
$$

are valid.
Proof. Since $w_{a} \geqq h_{a}, w_{b} \geqq h_{b}, w_{c} \geqq h_{c}$ and $\sum h_{a} \geqq 9 r$, the first inequality (3) directly follows.

On the basis of identities

$$
\sum \frac{w_{a}^{2}}{h_{a}}=8 s R \sum \frac{s-a}{(b+c)^{2}} \quad \text { and } \quad \sum \frac{s-a}{b c}=\frac{4 R+r}{2 s R},
$$

it follows one after the other

$$
\sum \frac{w_{a}{ }^{2}}{h_{a}} \leqq 8 s R \sum \frac{s-a}{4 b c}=4 R+r .
$$

Thereby the second inequality in (3) is proved, too.
Since in all the above inequalities, equality holds if and only if the triangle is equilateral, it follows that in (3) equality holds if and only if the triangle is equilateral.

Theorem 5. In every triangle

$$
a w_{a}+b w_{b}+c w_{c} \geqq 6 s r .
$$

Equality holds if and only if the triangle is equilateral.
Proof. On the basis of inequalities $w_{a} \geqq h_{a}, w_{b} \geqq h_{b}, w_{c} \geqq h_{c}$, where equality holds if and only if the triangle is equilateral, we get

$$
\sum a w_{a} \geqq \sum a h_{a}=\sum a \frac{2 F}{a}=6 s r,
$$

whereby the theorem is proved.
Theorem 6. For every triangle

$$
\begin{equation*}
6 s r \leqq \sum a m_{a} \leqq \frac{\sqrt{3}}{2} \sum a^{2} . \tag{4}
\end{equation*}
$$

Equality holds if and only if the triangle is equilateral.

Proof. The first inequality is proved in the same way as the statement of Theorem 5.

On the basis of Cauchy-Schwarz inequality, we have

$$
\begin{equation*}
\sum a m_{a} \leqq\left(\sum a^{2}\right)^{1 / 2}\left(\sum m_{a}^{2}\right)^{1 / 2} . \tag{5}
\end{equation*}
$$

Since $\sum m_{a}{ }^{2}=\frac{3}{4} \sum a^{2}$ from (5) the other inequality in (4) follows, whereby the theorem is proved.

COMMENTS BY R. R. JANIČ

1° If the triangle is non-obtuse then (see [3])

$$
\begin{equation*}
s^{2} \geqq 2 R^{2}+8 R r+3 r^{2} . \tag{6}
\end{equation*}
$$

Using this inequality and $\sum \frac{b+c}{a}=\frac{s^{2}-2 R r+r^{2}}{2 R r}$, we obtain

$$
\frac{R^{2}+3 R r+2 r^{2}}{R r} \leqq \sum \frac{b+c}{a}
$$

i. e., if the triangle is non-obtuse theo the following inequalities are valid

$$
\frac{R^{2}+3 R r+2 r^{2}}{R r} \leqq \sum \frac{b+c}{a} \leqq \frac{2 R^{2}+R r+2 r^{2}}{R r}
$$

which are sharper than inequalities mentioned in Theorem 1.
2° In the same way we obtain

$$
\sum \frac{s-a}{b+c} \leqq \frac{R^{2}+8 R r+4 r^{2}}{2 R^{2}+10 R r+4 r^{2}}
$$

which is sharper than the right inequality in (2).
3° Since (see [4])

$$
\frac{m_{a}}{w_{a}} \geqq \frac{(b+c)^{2}}{4 b c} \geqq 1,
$$

we have

Similarly

$$
\begin{equation*}
a w_{a} \leqq a m_{a} \tag{7}
\end{equation*}
$$

)

$$
\begin{equation*}
b w_{b} \leqq b m_{b}, \quad c w_{c} \leqq c m_{c} . \tag{8}
\end{equation*}
$$

Addirg (7) and (8) we get

$$
\sum a w_{a} \leqq \sum a m_{a} .
$$

Therefore

$$
6 r s \leqq \sum a w_{a} \leqq \sum a m_{a} \leqq \frac{\sqrt{3}}{2} \sum a^{2} .
$$

The previous inequalities can be written in the symmetrical form, i.e.

$$
6 r s \leqq \sum a w_{a} \leqq \sum a m_{a} \leqq 3 R s
$$

Let p_{a}, p_{b}, p_{c} be the distances of the circumcentre from the sides $B C, C A, A B$ respectively. Then

$$
m_{a} \leqq R+p_{a}, \quad m_{b} \leqq R+p_{b}, \quad m_{c} \leqq R+p_{c},
$$

which implies

$$
a m_{a}+b m_{b}+c m_{c} \leqq R(a+b+c)+a p_{a}+b p_{b}+c p_{c} .
$$

Since

$$
a p_{a}=R^{2} \sin 2 \alpha, \quad b p_{b}=R^{2} \sin 2 \beta, \quad c p_{c}=R^{2} \sin 2 \gamma
$$

and (see [1] 2.4. p. 18)

$$
\sin 2 \alpha+\sin 2 \beta+\sin 2 \gamma \leqq \sin \alpha+\sin \beta+\sin \gamma=\frac{a+b+c}{2 R}
$$

we obtain

$$
a m_{a}+b m_{b}+c m \leqq 2 R s+R s=3 R s .
$$

REFERENCES

1. O. Bottema, R. Ž. Đorøević, R. R. Janić, D. S. Mitrinović, P. M. Vasić: Geometric Inequalities. Groningen 1969.
2. R. Ž. Đormević: Some inequalities for triangle. These Publications № 247-№ 273 (1969), 35-39.
3. A. W. Walker: Problem E 2388. Amer. Math. Monthly 79 (1972), 1135.
4. G. Tsintsifas: Problem E 2471. Amer. Math. Monthly 81 (1974), 406.

[^0]: * Presented May 22, 1975 by O. Bottema and R. R. Janić.

