532. REMARK ON AN ELEMENTARY INEQUALITY*

Branko M. Milisavljević

The author of this paper is an undergraduate student at the Technical Faculty University of Novi Sad. This is his first contribution to Mathematics.

Editorial Committee

Let f be a convex and differentiable function on $\mathbf{I}=(a, b)$. Then

$$
\begin{equation*}
f(x)+h f^{\prime}(x)<f(x+h)<f(x)+h f^{\prime}(x+h) \quad(h \neq 0), \tag{1}
\end{equation*}
$$

where $x, h \in \mathbf{R}$ and $x, x+h \in \mathbf{I}$.
For concave function signs of inequality change their sense.
Function $f(x)=x^{m+1}$ is convex for: $m>0$ or $m<-1$, but concave for: $-1<m<0$, when $x>0$. Since $f^{\prime}(x)=(m+1) x^{m}$, then for $h=1$, according to (1), we have

$$
\begin{equation*}
x^{m+1}+(m+1) x^{m}<(x+1)^{m+1}<x^{m+1}+(m+1)(x+1)^{m} . \tag{2}
\end{equation*}
$$

Putting in (2) consecut vely $x=1,2, \ldots, n-1$, and adding those inequalities, we find

$$
\begin{equation*}
\sum_{k=1}^{n-1} k^{m+1}+(m+1) \sum_{k=1}^{n-1} k^{m} \ll \sum_{k=2}^{n} k^{m+1}<\sum_{k=1}^{n-1} k^{m+1}+(m+1) \sum_{k=2}^{n} k^{m} . \tag{3}
\end{equation*}
$$

The first inequality of expression (3) is equivalent to

$$
\begin{equation*}
\sum_{k=1}^{n} k^{m}<\frac{n^{m+1}-1}{m+1}+n^{m} \tag{4}
\end{equation*}
$$

and the second to

$$
\begin{equation*}
\frac{n^{m+1}-1}{m+1}+1<\sum_{k=1}^{n} k^{m} . \tag{5}
\end{equation*}
$$

From (4) and (5) we obtain the inequalities

$$
\begin{equation*}
\frac{n^{m+1}-1}{m+1}+1<\sum_{k=1}^{n} k^{m}<\frac{n^{m+1}-1}{m+1}+n^{m} \tag{6}
\end{equation*}
$$

which are valid for $k \in \mathbf{N}$ and $m>0$, while the inequalities

$$
\begin{equation*}
\frac{n^{m+1}-1}{m+1}+n^{m}<\sum_{k=1}^{n} k^{m}<\frac{n^{m+1}-1}{m+1}+1, \tag{6a}
\end{equation*}
$$

are valid for $k \in \mathbf{N}$ and $m<0$.

[^0]In (6) and (6a) lower and upper limit for $m=-1$ become indefinite, but applying (1) to the concave function $f(x)=\log _{a} x(a>1)$, we arrive at

$$
\begin{equation*}
\frac{\log _{a}(n \sqrt[n]{e})}{\log _{a} e}<\sum_{k=1}^{n} \frac{1}{k}<\frac{\log _{a}(n e)}{\log _{a} e} \tag{6b}
\end{equation*}
$$

In (6) - (6b) equality is valid for $n=1$.
Professor D. Nešić, who worked in Velika Škola (Beograd), discovered inequalities (6) in 1892, without giving conditions under which they are valid [1].

Inequalities (6) and (6a) can be considered as generalizations of some wellknown particular inequalities. From (6a) for $m=-2$ we get

$$
\begin{equation*}
\frac{1}{n^{2}}-\frac{1}{n}+1<\sum_{k=1}^{n} \frac{1}{k^{2}}<2-\frac{1}{n} \quad(n>1) . \tag{7}
\end{equation*}
$$

In [2], p. 47, we find the inequality

$$
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}}<2 .
$$

Inequality (7) is more complete with stronger upper limit
For $m=-\frac{1}{2}$, (6a) becomes

$$
\begin{equation*}
2 \sqrt{n}-2+\frac{1}{\sqrt{n}}<\sum_{k=1}^{n} \frac{1}{\sqrt{k}}<2 \sqrt{n}-1 \quad(n>1) . \tag{8}
\end{equation*}
$$

This inequality is contained in [4] as the second inequality in 3.1.12. Approximation of the sum $\sum_{k=1}^{n} 1 / \sqrt{k}$ is given in [3] with two inequalities, on page 110 , in 2.1.10 and 2.1.11.

Putting in (6b) $a=e$ it follows

$$
\begin{equation*}
\frac{1}{n}+\log n<\sum_{k=1}^{n} \frac{1}{k}<1+\log n \quad(n>1) . \tag{9}
\end{equation*}
$$

In [4], p. 185, in 3.1.2, the Schlömlich-Lemonnier inequality is quoted

$$
\log (n+1)<1+\frac{1}{2}+\cdots+\frac{1}{n}<1+\log n .
$$

Lower limit in (9) is stronger than the lower limit of this inequality.

REFERENCES

1. D. Nešíć: Dokaz obrasca $\lim \frac{1^{m}+2^{m}+\cdots+(n-1)^{m}}{n^{m+1}}=\frac{1}{m+1}$. Glas Srpske akademije 33 (1892).
2. D. S. Mrrinović: Važnije nejednakosti. Beograd 1958.
3. D. S. Mitrinović: Nejednakosti. Beograd 1965.
4. D. S. Mitrinović (saradnik P. M. Vastć): Analitičke nejednakosti. Beograd 1970.

[^0]: * Presented May 5, 1975 by P. M. Vasić.

 12*

