528. PRODUCTS OF HERMITIAN TRANSFORMATION*

Ali R. Amir-Moéz

Abstract

Let A and B be hermitian transformations on E_{n}, a unitary space of dimension n, where at least one of A and B is nonnegative (positive semi-definite). Then proper values of $A B$ are real. A generalization of minimax theorem for $A B$ is given and other problems are suggested.

Introduction. Many inequalities for singular values of the product of two matrices have been obtained by R. C. Thompson, for example [5], and other papers of his. These inequalities are also valid for the proper values of the product of two non-negative transformations on E_{n} [1]. We shall not go into that. In this article we study the product of some hermitian transformations on E_{n}.

1. Notations. We shall consider a unitary space E_{n} of dimension n. Vectors wilk be denoted by Greek letters and complex numbers by italic small letters. Other notations will follow the standard ones.
2. Theorem. Let A and B be hermitian transformations on E_{n}, where at least one of A and B is non-negative. Then proper values of $A B$ are real.

The proof is very simple. For example, let A be non-negative. Then $\sqrt{A} B \sqrt{A}$ is hermitian and has the same proper values as $A B$.

Since $A B$, in general, does not have an orthonormal set of proper vectors we shall study a geometric structure of proper vectors of $A B$ in the next few sections.
3. Relatively orthogonal sets. Let H be a hermitian transformation on $\boldsymbol{E}_{\boldsymbol{n}}$. A set $\left\{\xi_{1}, \ldots, \xi_{k}\right\}$ is called relatively orthogonal, relative to H, if $\left(H \xi_{i}, \xi_{j}\right)=0$ for $i \neq j$.
4. Theorem. Let H be a hermitian transformation on E_{n} with z zero, p positive and $n-(p+z)$ negative proper values. Let $\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ be linearly independent and relatively orthogonal, relative to H. Then ξ 's may be ordered in such a way that

$$
\begin{array}{ll}
\left(H \xi_{i}, \xi_{i}\right)=0, & i=1, \ldots, z \\
\left(H \xi_{i}, \xi_{i}\right)>0, & i=z+1, \ldots, z+p \\
\left(H \xi_{i}, \xi_{i}\right)<0, & i=z+p+1, \ldots, n
\end{array}
$$

This theorem is due to Sylvester (Law of Inertia).
5. Theorem. Let $\left\{\xi_{1}, \ldots, \xi_{k}\right\}$ be a set of relatively orthogonal vectors relative to a hermitian transformation H on E_{n} such that $\left(H \xi_{i}, \xi_{i}\right) \neq 0, i=1, \ldots, k$. Then the set is linearly independent.

The proof will be omitted.

[^0]6. Theorem. Let A and B be hermitian transformations on E_{n}, where B is nonnegative. Let $c_{i} \neq c_{j}$ be two proper values of $A B . B y$, we know that c_{i} and c_{j} are real. Let
$$
A B \gamma_{i}=c_{i} \gamma_{i}, \quad A B \gamma_{j}=c_{j} \gamma_{j}, \quad \gamma_{i} \neq \overrightarrow{0}, \quad \gamma_{j} \neq \overrightarrow{0}
$$

Then $\left(B \gamma_{i}, \gamma_{j}\right)=0$.
Proof. The proof follows the pattern of a hermitian transformation. One observes that

$$
\left(A B \gamma_{i}, B \gamma_{j}\right)=c_{i}\left(\gamma_{i}, B \gamma_{j}\right)=\left(B \gamma_{i}, A B \gamma_{j}\right)=c_{j}\left(B \gamma_{i}, \gamma_{j}\right)
$$

7. Corollary. Let A and B satisfy hypotheses of 6 . Then the set of proper vectors of $A B$ is linearly independent.
8. Theorem. Let H be a non-singular positive hermitian transformation on E_{n}. Let $\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ be a set of relative orthogonal vectors relative to H. Then this set can be normalized to $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ such that $\left(H \alpha_{i}, \alpha_{j}\right)=\delta_{i j}$. Thus the set $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ will be called relatively orthonormal relative to H.

The proof is quite simple. One may extend the theorem to the case that H is singular.
9. Components of a vector. Let $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be relatively orthonormal relative to a non-singular positive transformation H on E_{n}. Then $\xi \in E_{n}$ can be written as

$$
\xi=\sum_{i=1}^{n}\left(\xi, H \alpha_{i}\right) \alpha_{i} .
$$

Also one obtains that

$$
(H \xi, \xi)=\sum_{i=1}^{n}\left|\left(\xi, H \alpha_{i}\right)\right|^{2} .
$$

10. A minimax principle. Let A and B be hermitian transformations on E_{n} and B be positive. Let $c_{1} \geqq \cdots \geqq c_{n}$ be proper values of $C=A B$. Then

$$
\begin{array}{cl}
c_{k}=\sup _{M} & \inf _{\substack{\xi \in M \\
(B \xi, \xi)=1}}(A B \xi, B \xi) . \\
\operatorname{dim} M=k &
\end{array}
$$

The proof follows step by step the techniques of Fischer's minimax theorem. We give an outline of the proof.

Proof. Let $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be a set of relative orthonormal proper vectors of $A B$ such that $A B \alpha_{i}=c_{i} \alpha_{i}, i=1, \ldots, n$. Let $M=\left[\alpha_{1}, \ldots, \alpha_{k}\right]$. Then for $\xi \in M \&$ $(B \xi, \xi)=1$ we have

$$
\begin{equation*}
(A B \xi, B \xi)=\sum_{i=1}^{k} c_{i}\left(B \alpha_{i}, \alpha_{i}\right) \geqq c_{k} . \tag{1}
\end{equation*}
$$

On the other hand let M be a k-dimensional subspace of E_{n}. Let $N=$ $=\left[\alpha_{k}, \ldots, \alpha_{n}\right]$. Then there exists $\xi \in M \cap N$ such that $(B \xi, \xi)=1$. Thus

$$
\begin{equation*}
(A B \xi, \xi)=\sum_{i=k}^{n} c_{i}\left(B \alpha_{i}, a_{i}\right) \leqq c_{k} \tag{2}
\end{equation*}
$$

Comparing (1) and (2) the proof is complete.
Indeed, this theorem can be generalized in many directions as was done in [1], [2], [3], and [4], ... Thus they can be assigned as exercises.

One can change B to a non negative transformation and obtain modified results. We omit that.

Since in the formula, $(A B \xi, B \xi)$ is a quadratic form in $B \xi$, one may obtain inequalites containing proper values of $A, A B$, and B. We omit the details.

REFERENCES

1. A. R. Amir-Moéz: Extreme properties of eigenvalues of a hermitian transformation and singular values of the sum and product of linear transformations. Duke Math. J. 23 (1956), 463-476.
2. A. R. Amir-Moéz, G. E. Johnston: Extreme properties of products of quadratic form. Duke Math. J. 37 (1970), 61-65.
3. Ky. Fan: Maximum properties and inequalities for the eigenvalues of completely continuos operators. Proc. Nat. Acad. Sci. USA 37 (1951), 760-766.
4. M. Marcus, J. L. McGregor: Extremal properties of hermitian matrices. Canad. J. Math. 8 (1956), 524-531.
5. R. C. Thompson, S. Therianos: The eigenvalues and singular valuls of matrix sums and products VIII: Displacements of Indices. Aequationes Math. 7 (1972), 219-242.

Department of Mathematics
Texas Tech. University
Lubbock, TX. 79409
USA

[^0]: * Presented June 12, 1975 by D. S. Mitrinović.

