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507. SEXTIC INEQUALITIES FOR THE SIDES OF
A TRIANGLE*

J. F. Rigby

1. Many of the interesting inequalities connecting the sides, angles, radii
etc. of a triangle, such as can be found in [3] and elsewhere, can be reduced
by well known formulae to symmetric homogeneous polynomial inequalities in
the sides a, b, c of the triangle. Symmetric homogeneous cubic inequalities have
been completely investigated in [1] and [5], and quartic inequalities partially
investigated in [1].

We can write a=y+z, b=z+x, c=x+y where x, y, z are positive;
conversely, if x, y, z are positive then y+z, z+x, x+y are the sides of a
triangle. It is convenient to work with x, y, z rather than with a, b, c.

A number of existing inequalities can be reduced to symmetric homoge-
neous sextic inequalities in x, y, z, with equality when x = y = z and without any
terms involving 2: X6 or 2: x5 (y + z). In this paper' we shall find necessary and
sufficient conditions for such inequalities to be satisfied for all positive x, y, z;
we shall then use these conditions to prove some new and some old inequalities.

The term" triangle"' will mean" triangle or degenerate triangle", "posi-
tive" will mean "positive or zero", "acute triangle" will mean "acute or right
triangle" etc. Terms such as ,,£trict triangle" will be used when we wish to
exclude degenerate cases.

2. Let us write J=2:x4(y2+Z2), K=2:x4YZ=xyz2:x3, L=2:y3z3, M=

= 2: (X3 y2 Z + X3 Y Z2) = xyz 2: x2 (y + z), N = x2 y2 Z2. We start with some simple
inequalitie<;; others can easily be obtained in a similar way, but they turn out
to be positive linear combinations of those given below.

(1) 2:x2yz(y-z)2=M-6N~O

with equality if and only if x = y = z or one of x, y, z equals zero.
(2) 2: (Y-Z)2 (Z-X)2(X - y)2=J-2K-2L+ 2M-6N~O

with equality if and only if any two of x, y, z are equal.
The inequality

(3) 2: X3- 2: x2 (y + z) + 3 xyz ~ 0

is the special case n = I of SCHUR'S inequality 2: xn (x-y) (x-z) ~ 0 [4, p. 64],
which is easily proved by writing

2: xn (x-y) (x-z) = xn (X-y)2 + (xn- yn + zn) (x-y) (y-z) + zn (y-z)Z,
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and assuming without loss of generality tha( x:;;;y :;;;z. Equality occurs if and
only if either x = y = z or x = 0, y = z etc. (assuming n:;;;0). The in~quality (3)
iz equivalent to COLINS'Sinequality [3, 1.6]; from it. we obtain

(4) xyz (LX3 - L X2(y +z)+ 3 xyz) =K-M + 3 N:;;;0

with equality if and only if x = y = z or one of x, y, z equals zero.
Applying (3) to yz, zx, xy we obtain

L(YZ)3- L (yz)2 (zx+ xy) + 3 yz. zx. xy =L-M + 3 N:;;;0(5)

with equality if and only if x = y = z or any two of x, y, z equal zero.
Let us write J-2K-2L+2M-6N=P, K-M +3N=Q, L-M+3N=R,

M - 6 N = S; the inequalities (2), (4), (5) and (1) then become P:;;;0, Q:;;;0,
R:;;;O, S:;;;O.

Any symmetric homogeneous sextic with no terms involving Lx6 or

LX5 (y + z) is a linear combination of J, K, L, M, N and can be written in
the form

rx(J-2K-2L+ 2M-6N) + [j(K-M + 3N)+y (L-M + 3 N) + ~ (M-6N) +<.N;

if we require this sextic to have value zero when x = y = z, we must have <. = O.
The sextic can then be written in the form

I(x, y, z)=rxP+[jQ+yR+~S,

and we certainly have I(x, y, z):;;;O for all positive x, y, z if rx,~, y, ~:;;;O.
Suppose conversely that I(x, y, z):;;;0 for all positive x, y, z.

Thenf(x, 1, 0)=x2[rx(x-I)2+yx], so x-4/(x, 1,0) --0>-rxas x --0>-00; hence rx:;;;O.
Also x-4f(x, 1, 1) --0>-~ as x --0>-00; he:,1ce~:;;;O. Also 1(0,1, I)=y; hence y:;;;O.

However, the following inequalities all show that a need not be positive
but can take the value - V~y:

(6) LYZ(X-y)2(X-z)2=Q+R-S:;;;0;

(7) L(Y-Z)2 (X-Ay)2 (x - AZ)2= (A4+ A2+ I)P+ 2 (A-I)2 [A2Q + R-A S]:;;;0;
(8) L[(Z-X) (Y-AZ) (Y-A x)-(x-y) (Z-A x) (Z-Ay)]2

= (A4_A3_A + I)P+ 3 (A-I)2 [A2Q + R-A S]:;;;O.

Since ~, y:;;;0, we can write

f(x, y, y) = y2 (x- y)2 [(x V~ - Y Vy)2 + 2 (~+ V~y) xy].

This expression is positive for all positive x, y if and only if a:;;; - V~y; hence
we have a necessary condition on a for f(x, y, z) to be always positive. We
shall show that the condition is also sufficient by proving the following lemma.

Lemma. If ~, y:;;;0 then

f[3,y(x, y, z)= ~ Q+y R-V~y S:;;;O

for all positive x, y, z. If y = 0, equality occurs if and only if x = y = z or one
of x, y, z equals zero. If y*O, equality occurs if and only if x=y=z or two
of x, y, z equal zero or x: y : z = Vy : ~ : ~ etc.
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Proof. (i) Suppose ~ ~ y. Assume without loss of generality that x ~y ~ z. Then

4f[3,y (x, y, z) = yz (x-y) (x-z) (2 x V~- y Vy-z Vy)Z

+ 4 (Vy-~)z (y-z? XZyz+ 4 (y-~) (y-z)Z (2 x-y-z)xyz

+ y(y- z)Z[4X3 {y+z)-17 XZyz+ 5 xyz(y+z).- yZzZJ;

the expression in square brackets in the final term is positive since it can be
written in the form

y(x - y)3 +x(3 y+ 4z) (x - y)2 + y(x - y) (y-z) (9 x+ 3 y- 5z) + 4 yZ(y- z)Z.

(ii) Suppose ~ >y. If x = 0 or y = 0 or z = 0, the result is trivial. If
not, then

f[3,y(x, y, Z)=X4y4z4fy, [3(X-I, y-l, Z-l),

which is positive by (i) since y ~~.
The values of x, y, z for which f[3,y (x, y, z) = 0 are easily obtained from

the above expression for f[3,y (x, y, z) as a sum of non-negative terms.
Let us write ~ P + ~Q + YR + aS= <I>(~, ~, y, a). Combining the above

results we have the main theorem.

Theorem. <P(~, ~, y, a) ~ 0 for all positive x, y, z if and only if ~,~, y ~ 0 and
a~ - V~y.

The values of x, y, z for which equality occurs depend on ~,~, y, a. In
any particular case these values of x, y, z can be found by writing

The rest of the paper is devoted to applications of this theorem. It is
interesting to note that in most of the main applications either ~= 0, or y = 0,
so that we only need the inequalities (1), (2), (4) and (5).

3. Consider first for what values of A and fL the inequality

SZ~ARz+ fLRr+ (27
- 4 A- 2 fL)rZ

is satisfied for all triangles; the coefficient of rZ has been chosen to give equa-
lity when a=b=c, i.e., when x=y=z. Using the identities 4RF=abc=

= (y+z)(z+x)(x+y), rF=Fz/s=xyz, sZp2=xyz(x+y+z)3, where F is the
area of the tliangle, we see that the above inequality is equivalent (except
when F= 0) to

<P(A, 4A-16, 4A, 12A+4fL-64)~0.

We therefore require A~ 4. Write A= 4/(1 - 8Z) where
4A-16=166z/0-6Z). We must also have

12A+4fL-64~ -V4A(4A-16)= -168/(1-8Z),

Le., fL= 4 (1 - 8 - 4 8Z)/(1- 8Z)+ <:z, say.

If we put <:= 0 we obtain

0~8< 1; then

(9)
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Equality occurs here if and oDly if x = y = z or x: y: z = 1 : 6: 6 etc., i.e., when
a=b = c or a: b: c= 26: 1 + 6: 1 + 6 etc. We must ignore the equality that
occurs in the sextic when y = z = 0 etc., since F = 0 in these cases and we must
divide by F to get back to the original inequality; also R is not defined in
these degenerate cases.

The inequalities (9), for all allowable values of 6, are all best possible,
in the sense that, if we make fL any bigger for a given value of A, we simply
add a positive multiple of the positive expression r (R - 2 r) to the right hand side.

For different values of 6, the right hand sides of (9) cannot be compared,
since they are equal to S2 for different values of x, y, z. Thus BLUNDON'Sine-
quality S2~ 4 R2 + 4 Rr + 3 r2 [3, 5.8, 5.9], given by 6 = 0, is just one of a whole
range of best possible inequalities.

The value 6 = 1/3 gives

2 S2~ 9 R2 + 2 Rr + 14r2= 9 R2+ 8 Rr + 2 r2- 6 r (R - 2 r),

which improves [3, 5.6], and 6 = 1/2 gives

3 s2~(4 R+ r)2-16 r (R- 2 r),

which improves [3, 5.5]. We caD eliminate the term in Rr in (9) by putting
6=(VT7 -1)/8; this given

(23 + V 17) S2~ 128 R2 + (109 + 27 V 17) r2.

The inequality 2 S ~ 3 R V3 [3, 5.3] is given by A= 27/4, fL= O.
The opposite inequality

S2~ AR2 + fLRr + (27 - 4 A- 2 fL)r2

is equivalent (except when F = 0) to

CP(-A, 16-4A, -4A, 64-12A-4fL)~O.

which leads to the best possible inequalities

(10) s2~ (1 - (,)2)-1[ - 4 (,)2R2 + 4 (4+ (,) - (,)2)Rr - (5 + 8 (,) + 3 (,)2) r2] (0 ~ (,)< 1).

Equality occurs here if and only if x = y = z or x: y : z = (,): 1 : 1 etc.
The value (,)

= 0 gives

s2~I6Rr-5R2 [3,5.8,5.9],
and i!.=fL=O gives

s2~27r2 [3,5.11].

The inequality S2~ [~R + (3 V3 - 2~) r]2 can be investigated in a similar
way; the best possible value for ~ is 2 [3, 5.4].

4. Similar inequalities are also given in Chapter 5 of [3], with S2 replaced
by 2a2, 2bc and 2(b-c)Z. These and other inequalities can be obtained from
(9) and (l0) with the aid of the identity

(11) 22hc-2a2=4(4R+r)r.
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For instance, to investigate Laz we write

L aZ= 2 SZ - 2 (4 R + r) r.

As a final exemple of the UEe of (9), take 0 = (vu - 3)/6.
ting a suitable multiple of (11) from (9) we obtain

By subtrac-

(3 VT7 - 5) L a2 + (15 - 3 Vu) Lbc ~ 72 (R2 + rZ).

5. In [3, 11.18] two inequalities due to OPPENHEIMan; given for the
angles of an acute triangle.

If f, g, h are the sides of an acute triangle, then g2 + hZ~j2 etc.; if we
write f2 = a, gZ= b, hZ= c, then a, b, c are the sides of a triangle, and hence
we may write a=y+z, b=z+x, c=x+y, where x, y, z~O. Conversely, if
x, y, z ~ 0 then f, g, h are the sides of an acute triangle.

If ~, 'YJ,~ are the angles of the acute triangle with sides f, g, h, then
cos2 ~= (gZ+ h2 - j2)z/4 gZhZ= xZ/(z + x) (x + y), etc..

Let w; consider for what values of "A,fJ.,v the inequality

64 "A IT cosz ~ + 16 fJ. L cosz 'YJcosz ~ + 4 v LCOSz ~ - ("A+ 3 fJ.+ 3 v) ~ 0

is satisfied for all acute triangles. This is equivalent (except when two of x, y, z
equal zero) to

rfJ(v-"A-3fJ., 4v-4"A-12fJ., 4v-4),+4fJ., 4v-12"A-4fJ.)~0.

Necessary and sufficient conditions for this are

4v- 4"A-12fJ.=

4v- 4"A+ 4fJ.=

4 IF (say), 0 ~ 0,

4 (J:,z(say), cu~ 0,

4v-12"A- 4fJ.= -40cu+2EZ (say).

This gives 4 fJ.= CUZ- OZ, 4), = (0 +cu)Z- EZ, 4v = 2 OZ+ 2 Ocu+ 4 CUZ-EZ. Thus the
general inequality of this type may be written in the form

(12) 02 [16 IT cos2 ~ - 4 L cosz 'YJcos2 ~ + 2 L cosz ~ - 1]

+ 4 CUZ[4 IT cosz ~ + L cosz 'YJcosz ~ + L cosz ~ - I]

+ ( - 2 Ocu+ EZ)[- 16 IT cosz ~- L COS2 ~+ 1]~ o.

If we write (12) in the form

rfJ(02, 4 OZ,4 cu2, - 4 Ocu+ 2 E2)~ 0,

we can easily find the values of x, y, z for which equality occurs.

OPPENHEIM'Sinequalities [3, 11.18] are given by 0 = I, cu= 0, E= 1 and
by 0 = 1, cu= 0, E=

V"2. KOOISTRA'S inequality Lsecz ~~ 12 [3. 2.46] is given by
0=0, cu= 1, E=2.
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6. The calculations involved in § 5 suggest that we should also investigate
for what values of A, fL,v the inequality

- 8 ATIcos oc- 4 fLL cos ~ cos y - 2 v Leos oc+ (A+ 3 fL+ 3 v) ~ 0

is true for all triangles. We have cos oc= (bZ+ eZ
- a2)/2 be etc., and the inequ-

ality is equivalent to

(l)(9A+7fL+v, 4A+12fL+4v, 36A+28fL+4v, 12A+20fL+4v)~0.

Necessary and sufficient conditions for this are

4A+ 12fL.+4v=48Z (say), 8~0,

36 A+ 28 fL+ 4,) = 4 W2 (say), w ~ 0,

12A+20fL+4v= -48w+4EZ (say).

This gives 4A=8z+28w+wz-2EZ, 4fL= -38z-48w-w2+4EZ, 2v=
= 6 8z + 5 8w + wZ- 5 EZ. Thus the general inequality of this type may be written
in the form

(13) 8z [ - 2 TIcos oc+ 3L cos ~ cos y - 6 Leos oc+ 7]

+ wZ [ - 2 TI cos oc+ Leos ~ co,> Y - Leos oc+ 1]

+ (-8w + EZ)[4 TIcos oc- 4 Leos ~cosy + 5 Leos oc- 5] ~O.

If we write (13) in the form
(l)(wZ, 46z, 4 wZ, - 4 8w + 4 (2) ~ 0,

we can easily find the values of x, y, z for which equality occurs.

BAGER'S inequality Leos ~ co,>Y~ 6 TIcos oc [1, (8)] is given by 8 = 0,

w= VS, E = 1.

7. Let ha, hb, he denote the altitudes of the triangle with sides a, b, e. The
expression L h}/a2 takes the value zero for degenerate triangles in which one
angle measures 180°, but a reasonable conjecture for acute triangles is

(14) L hl/f2~ 9/4,

with equality for equilateral triangles and isosceles right-angled triangles.
Using first the substitution f2 = a etc. as in § 5, we find that this conjec-

ture is' equivalent to

(15)
or

l.e.
4Lx5(y+z) -J+2 K- 6 L- 2 M + 6 N~O,

4 LXY(x- y)4+ (l)(15, 32, 0, 0) ~O,

which is certainly true. Equality occurs if and only if x = Y = z or Y = z, x = 0
etc. or y=z=O etc.. This gives f=g=h or f:g:h= Vi: 1: 1 etc.; the cases g=h,
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1=0 etc. must be excluded when we revert to the original inequality since f, g, h
occur in the denominator.

8. The value of 'L hflf for right-angled triangles has minimum 5/2 and
maximum"infinity, whereas its value when I=g=h is 3 V3/2>5/2. Hence we
conjecture that

(16) hr!/~ 5/2 for acute triangles.

This conjecture is equivalent to

(17)

Setting that we have already proved (15) it will be sufficient to prove

(18)

which, after division by 2 abc, reduces to

(19)

This is equivalent to 8 xyz ~ O. Thus we have equality in (18) if and only if
x = 0 etc. (i.e., a = b + c etc.) or a = 0 etc.. Since (17) is the sum of (15) and
(18) we have equality in (I7) if and only if I: g: h = V"2: 1 : 1 etc., i.e., if and
only if the triangle is an isosceles right-angled triangle.

9. Let P be a point inside the triangle ABC, and let AP, BP, CP meet the
opposite sides at D, E, F respectively. Using (14) and (16) to deal with acute
triangles, we can easily prove that

(20)

Equality occurs only in the degenerate cases when A is the mid-point of BC etc.

10. The inequality (19) can be written

(21)

('La) (2'Lbc- 'L aZ) ~ 8 abc,

('Lf2) (2 'L gZ h2
- 'L/4) ~ 8 f2 gZ hZ.

or

If Rand F denote the circumradius and area of the acute triangle with sides.
f, g, h, (21) can be written

('Lf2) 16 FZ ~ 8 (16 R2 FZ).

Hence we have the inequality

(22) 'Lf2 ~ 8 RZ for acute triangles,

with equality only for right-angled triangles.

11. A reasonable conjecture for acute triangles is

(23)
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Using the usual substitutions we find that this conjecture is equivalent (except
when F= 0) to

CP(0, 0, I, 2) + ION ~ 0,

which is certainly true. Equality occurs if and only if two of x, y, z equal zero,
i.e., if and only if f=O, g=h etc.. In these cases F=O, but we can easily check
that equality still holds in (23).

If the triangle ABC ha> a strictly obtuse angle at A, and if C' is diame-
trically opposite to B on the circumcircle, then BC<BC' and AC<AC'. Hence
BC4+CA4+AB4<BC'4+C'A4+AB4;;:;;32R4 by (23), since ABC' is a right-angled
triangle. Hence we have

(24)
for all triangles.

Finally we shall

(25)
This is equivalent to

prove

z..f4:;::;24 R4 for acute triangles.

CP(I, 4, 0, 4)+24N:;::;0.

Equality occurs if and only if x = 0, y = z etc., i.e., only for isosceles right-angled
triangles.

REFERENCES

1. P. J. VAN ALBADA: Geometric inequalities and their geometry. These Publications
Ng 338-Ng 352 (1971), 41-45.

2. A BAGER: A family of goniometric inequalities. These Publications Ng 338-Ng 352
(1971), 5-25.

3. O. BOTTEMA,R. Z. DORDEvIe, R. R. JANIe, D. S. MITRINoVIe, P. M. VAsIe: Geo-
metric Inequalities. Groningen, 1969,

4. G. H. HARDY, J. E. LITTLEWOODand G. POLYA: Inequalities. Cambridge, 1934,
5. J. F. RIGBY: A method of obtaining related triangle inequalities, with applications. These

Publications Ng 412-Ng 460 (1973), 217-226.

University College,
Cardiff, Wales, Great Britain


