506. EVALUATION OF A CLASS OF DEFINITE INTEGRALS*

M. L. Glasser

Let $\Phi(x)$ be a polynomial, trigonometric or exponential function of x. In this paper we examine the class of integrals

$$
\int_{-\infty}^{+\infty} \frac{\Phi(x)}{\prod_{j=1}^{N} \operatorname{hyp}\left(n_{j} x+a_{j}\right)} \mathrm{d} x
$$

where hyp p_{j} denotes the hyperbolic sine or cosine, the n_{j} are any N integers and the a_{j} are any N constants (which may be complex). Integrals of this form with $N=2$ arise in transport theory and isolated examples have been evaluated by a variety of techniques [1]. In this note we shall illustrate by an example how a general member of the class may be expressed in finite terms and explore some consequences (For the case $N=1$ see [2]).

Consider

$$
I=\int_{-\infty}^{+\infty} \frac{e^{-\alpha x} \mathrm{~d} x}{\cosh x \cosh (x+a) \cosh (x+b)} \quad(a \neq b \neq 0,|\operatorname{Re} \alpha|<3)
$$

The integrand has simple poles at $x=\frac{1}{2} \pi i, \frac{1}{2} \pi i-a, \frac{1}{2} \pi i-b$ with residues $i e^{-i \pi \alpha / 2} \operatorname{csch} a \operatorname{csch} b, i e^{-i \pi \alpha / 2} e^{\alpha a} \operatorname{csch} a \operatorname{csch}(a-b), i e^{-i \pi \alpha / 2} e^{\alpha b} \operatorname{csch} b \operatorname{csch}(b-a)$ respectively. Let σ denote their sum. By integrating around the contour extending from $-\infty$ to $+\infty$ along the real axis and $+\infty$ to $-\infty$ along the line $\operatorname{Im} x=\pi i$, since hyp $(u+i \pi)=-\operatorname{hyp} u$, we see that $\left(1+e^{-\pi i \alpha}\right) I=2 \pi i \sigma$. Hence

$$
\begin{equation*}
\mathrm{I}=\frac{\pi}{\cos \left(\frac{\pi \alpha}{2}\right)}\left[\frac{e^{\alpha a}}{\sinh a \sinh (b-a)}+\frac{e^{\alpha b}}{\sinh b \sinh (a-b)}-\frac{1}{\sinh a \sinh b}\right] . \tag{1}
\end{equation*}
$$

This result, which is valid for real values of the parameter, can be extended by analytic continuation. By operating on both sides of (1) with $\Phi\left(D_{\alpha}\right)\left(D_{\alpha}=\mathrm{d} / \mathrm{d} \alpha\right)$ and taking the limt $\alpha \rightarrow 0$, we replace $e^{-\alpha x}$ by $\Phi(x)$; by taking α to be imaginary and equating real and imaginary parts, we obtain the trigonometric case.

From the inversion theorem for the two sided Laplace transform we find from (1)

* Presented April 26, 1975 by P. M. Vasić.

4 Publikacije Elektrotehnixkog fakulteta 49
(2) $\operatorname{sech} x \operatorname{sech}(x+a) \operatorname{sech}(x+b)$

$$
=\pi \int_{c-i \infty}^{c+i \infty} \frac{\mathrm{~d} s}{2 \pi i} \frac{e^{8 x}}{\cos (\pi s / 2)}\left(\operatorname{csch}(a-b)\left(\frac{e^{s b}}{\sinh b}-\frac{e^{s a}}{\sinh a}\right)-\operatorname{csch} a \operatorname{csch} b\right)(0<c<1)
$$

In this way a number of inverse Mellin transforms may be evaluated. For example, in just the way (2) was obtained, we find

$$
\begin{equation*}
\operatorname{sech} x \operatorname{sech}(x+t)=\operatorname{csch} t \int_{c-i \infty}^{c+i \infty} \frac{\mathrm{~d} s}{2 \pi i} \cdot \frac{\pi}{\sin (\pi s / 2)} e^{x s}\left(e^{s t}-1\right) \tag{3}
\end{equation*}
$$

And from (3) we have

$$
\frac{1}{4} \operatorname{sech}^{2} \frac{x}{2}=\int_{c-i \infty}^{c+i \infty} \frac{\mathrm{~d} s}{2 \pi i} \frac{\pi s}{\sin \pi s} e^{x s}
$$

which is the basic formula used in [3]. Some other interesting consequences of (3) are

$$
\begin{aligned}
\int_{c-i \infty}^{c+i \infty} \frac{\mathrm{~d} s}{2 \pi i} \frac{\pi}{\sin \pi s} & (\psi(b+s)-\psi(c-s)) \\
& =\frac{1}{4}\left(\psi(b)-\psi(c)+\psi\left(\frac{c+1}{2}\right)-\psi\left(\frac{c}{2}\right)+\psi\left(\frac{b}{2}\right)-\psi\left(\frac{b+1}{2}\right)\right)
\end{aligned}
$$

where $\psi(x)=\frac{\mathrm{d}}{\mathrm{d} x} \log \Gamma(x)$, and

$$
\int_{c-i \infty}^{c+i \infty} \frac{\mathrm{~d} s}{2 \pi i} \frac{\pi}{\sin \pi s} \log \left(\frac{s-b}{s-a}\right)=\frac{1}{4} \log \left(\frac{a}{b}\right)+\log \frac{\Gamma\left(\frac{a}{2}\right) \Gamma\left(\frac{b+1}{2}\right)}{\Gamma\left(\frac{b}{2}\right) \Gamma\left(\frac{a+1}{2}\right)}
$$

REFERENCES

1. M. L. Glasser and V. E. Wood: Evaluation of Some Transport Integrals, II. J. Appl. Phys. 37 (1966), 4364-4366.
2. D. S. Mitrinović (saradnik J. D. KečKıć): Kompleksna analiza - Zbornik zadataka i problema. Beograd 1972.
3. M. L. Glasser: Note of the evaluation of some Fermi integrals. J. Math. Phys. 5 (1964), 1150-1152.

Department of Applied Mathematics
University of Waterloo,
Waterloo, Ont. N2L 3G1, Canada

