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505. THE RECONSTRUCTION PROBLEM FOR CHARACTERISTIC
POLYNOMIALS OF GRAPHS*

I. Gutman and D. M. Cvetkovic

Let X = {xl' . .. , xn} b~ the vertex set of a graph G. Gi denotes the sub.
graph of G induced by the set X\ {Xi}' Well-known ULAM'S conjecture states that
for n>2 the graph G can be reconstructed uniquely from the collection of its
subgraph5 Gi (i = 1, . . . , n). It was proved that ULAM'S conjecture is true for
some cIasse5 of graphs (regular, disconnected, trees etc.), but in the general case
the problem remains unsolved.

In this paper we shall pose and consider a problem of a similar kind.
Let A be the adjacency matrix of the graph G with n vertices. The characte-
ristic polynomial
(1)

of the adjacency matrix is calIed the characteristic polynomial of G. The eigen-
values Ap..., An of A form spectrum of G. The multiplicity of the number
zero in the spectrum of G will be denoted by 1)(G).

PGi(A) is the characteristic polynomial of the subgraph Gi and the colIec-
tion of the polynomials PGi(A) (i = 1, . . . , n) will be denoted by f} (G).

The problem reads:
Is it true, that for n>2 the characteristic polynomial PG(A) of a graph Gis

determined uniquely by the collection of the characteristic polynomials PGi(A)
(i= 1, ... , n) of subgraphs Gi(i= 1, ... , n)?

If the answer to this question is positive for a graph G, we shall say
that PG(A) can be recons tructed (by f} (G) .

We shall first discuss the relation between this and ULAM'S problem.
It is known that a graph in general is not determined by its characteristic po-
lynomial, i. e. there exist non-isomorphic graphs with the same characteristic
polynomial (or spectrum). This means that the characteristic polynomial contains
only partial information about the graph structure. Therefore, in our problem
less is to be proved about G than in ULAM'S problem, but also we have less
data about G (only characteristic polynomials of subgraphs but not the subgraphs
themselves). Jt is interesting to note that the positive answer to our problem
would imply the validity of ULAM'S conjecture for those graphs which are deter-
mined by their spectrum. Unfortunately, all nontrivial graphs, for which one
knows at present that they are characterized by spectra, are regular, while ULAM'S
conjecture is trivially true for regular graphs. Therefore, in connection with the
results from this pap~r it would b~ of interest to try 10 find some non-trivial
classes of non-regular graphs which are characterized by their spectra.
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On the other hand, if the characteristic polynomial can be reconstructed
(for a class of graphs) and if ULAM'S conjecture is not true (for the same class
of graphs), then two non-isomorphic graphs with the same collection of sub-
graphs G;(i= 1, ..., n), which would present a counterexample to ULAM'Sconjec-
ture, would have the same spectra. Therefore, it is pt:rhaps reasonable to search
counterexamples to ULAM'Sconjecture among graphs which form pairs of iso-
5p~ctral :,10n-isomorphic graphs.

We begin the considerations with a simple statement that was noted in [1],
namely

(2)
n

PG'(A)= L PG;(A).

i=1

Integrating this relation one gets all coefficients of the characteristic poly-
nomial (1) of G except an, Thus only an is to be further determined.

Note that there are graphs having the same derivative of the characteristic
polynomials but different coefficients an, The smallest example (for n> 2; since
in the case of n = 2 our conjecture as well a.s ULAM'S conjecture are not true)
is provided by the graphs G' = Kj,3 (star) and G" = P4 (path).

The corresponding polynomials are PG,(A) = 1.4- 3 )...2,PG" (A)=)...4- 3)...2+ 1.
But these graphs do not represent a counterexample to our conjecture since f]J(G')
and i]J(G") are different. We have examined several other such pairs of graphs
failing to find a counterexample.

Now we shall go a step further.

Lemma L If, besides f]J(G), an eigenvalue of G is known, PG()...) can be re-
constructed.

The proof is obvious.
This simple lemma represents the starting point for further consideralions.

.In some cases it is possible to find an eigenvalue on the basis of the collec-
tion i]J(G).

Lemma 2. The collection of vertex degrees of G can be determined from 'jJ (G).

Proof. The numb~r m of edges of G is equal to - a2, where a2 is a coef-
ficient from (1). Thus m is obtainable from i]J. In a similar way the number mf
of edges of each of the subgraphs Gi (i = 1, 2, . . . , n) can be obtained. The
quantities m - m; (i = 1, 2, ., . , n) are obviously the vertex degrees in G.

Theorem L If the collection f]J for a graph G is known, it can be established
whether or not G is regular. If G is regular, its characteristic polynomial can be
reconstructed.

Proof. The first statement follows from Lemma 2. According to this lemma,
the degree of G can also be determined. But, the degree of a regular graph is
always an eigenvalue of that graph. Then according to Lemma 1, PG()...)can be
reconstructed.

This completes the proof of the theorem.



The reconstruction problem for characteristic polynomials of graphs 47

This type of reasoning can be exploited iil all cases when the collection of
vertex degrees i'11plies the existence of a certan eigenvalue of G (for example,
when G has i~olated vertices, the number zero is an eigenvalue of G).

Let A be a hermitian of order nand B a principal submatrix of A of
order n - 1. It is well known that eigenvalues of A and eigenvalues of B sepa-
rate each other. Thus, if 0:,1e of matrices A, B has an eigenvalue A of multipli-
city p (p> 1), the other matrix has the same eigenvalue A with multiplicity at
least p - 1. This fact together with Lemma 1 implies the following theorem.

Theorem. 2. If at least one polynomial of f}J(G) has a root with the multiplicity

greater than 1, PG(A) can be reconstructed. This is always true if G has an ei-
genvalue of mutiplicity greater than 2.

Unfortunately, it s~ems that (here are many graphs G for which all sub-
graphs Gj have only simpJe eigenvalues.

Let U3 consider now bipartite graphs. All subgraphs Gj must then be bi-
partite and, conversely, if alJ Gj are bipartite, G is also bipartite except when G
is a circuit of odd length. In this last case all Gj are paths with n - 1 ver-
tices. The fact that Gj is bipartite or is a path can be recognized by PGj(A). The
first statement follows frcm the well known theorem that bipartite graphs and
only they have the spectra symmetric with respect to the zero point. The second
statement follows from the fact that a path is characterized by its spectrum. Thus,

Lemma 3. f}J(G) determines whether or not G is bipartite.

If G is a bipartite graph with n] vertices of one colour and nz vertices a
another colour, n] ~ nz, then inequality 'Y)(G) ~ n] - nz holds [2]. Among the sub-
graphs Gj there exists necessarily one with n] vertices of one colour and nz - 1
vertices of another, and hence 'Y)(GJ ~ n] - nz + 1. If n] #-nz we have 'Y)(GJ ~ 2
and according to Theorem 2, PG(A) can be reconstructed.

Note that for odd n we always have n]#-nz.
According to all these facts, P G(A) can be reconstructed from f}J(G) (wit-

hout additional information) if G is bipartite except for the case n] = nz and
'Y)(G)=O or 'Y)(G)=2 (fJr n[ =nz, 'Y)(G)is an even number).

It is known (see [3]) that the multiplicity of the number zero in the spec-
trum of a bipartit,~ graph G without circuits of length 4 s (s = 1, 2, . . .) is equal
to n - 2 t, where t is the maximal n'umber of mutually non-adjacent edges of G.
Then it is clear that by removal of a vertex, incident to an edge from such a
maximal system of non-adjacent edges, a subgraph Gj will be obtained, which has
the maximal system of non-adjacem edges of smaller cardinality. Therefore, 'Y)(Gj)
is greater than 'Y)(G). In such a way PG(A) can b~ reconstructed in the descri-
bed class of bipartite graphs also in the case of n] =nz and 'Y)(G)= 2.

We summarize these facts in the following theorem.

Theorem 3. The reconstruction conjecture for the characteristic polynomial is true
for all bipartite graphs G except, perhaps, for the case n] = nz and 'Y)(G) = 0 or,
'Y)(G) = 2 and G has a circuit of length 4 s (s EN).

Corollary. For all trees with 'Y)(G) > 0, PG(A) can be reconstructed.
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If b~sides fJJ(G) some additional information about G is known, we can,
of course, :>ay something more. For example, if we know that G is disconnected,
we can find PaP...). Actually, in this case the maximal root among the roots of
all polynomials Paj(A) is the maximal eigenvalue of G.

Further, if' we know that G is connected, Pa(A) can be reconstructed for
all trees. This can be seen in the following way. From the knowledge of the
number of edges and vertices one can in the case of connected graphs simply
decide whether G is a tree or not. Now, because of the Corollary of Theorem 3
only trees with 'Y)(G) = 0 are of interest here. In the case of trees the fact that
'Y)(G) = 0 is obviously equivalent to 'Y)(Gj) = 1 for all i = 1, 2, . .. , n. Hence from
IJJ(G) one can establish that 'Y)(G)=O and for this case we have an=( -1)n/2 [4].
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