501. ON COEFFICIENTS OF THE GREGORY FORMULA*

Dušan V. Slavić

The mutual connection of the known results on coefficients g_{n} of the
Gregory formula

$$
\frac{1}{h} \int_{x}^{x+m h} f(t) \mathrm{d} t=\sum_{k=0}^{m} f(x+k h)+\sum_{n=1}^{+\infty} g_{n}\left\{(-1)^{n} \Delta^{n-1} f(x)--\nabla^{n-1} f(x+m h)\right\}
$$

is presented in this paper. The known asymptotic formula for g_{n} is improved. An algorithm for quick calculation of coefficients g_{n} is proposed and the corresponding computer program is developed.

First ten coefficients g_{n} have the values:

$$
\begin{aligned}
& g_{1}=\frac{1}{2}, \quad g_{2}=\frac{1}{12}, \quad g_{3}=\frac{1}{24}, \quad g_{4}=\frac{19}{720}, \quad g_{5}=\frac{3}{160}, \quad g_{6}=\frac{863}{60480}, \\
& g_{7}=\frac{275}{24192}, \quad g_{8}=\frac{33953}{3628800}, \quad g_{9}=\frac{8183}{1036800}, \quad g_{10}=\frac{3250433}{479001600} .
\end{aligned}
$$

Coefficients g_{n} were calculated by T. Claussen for $n \leqq 13$, K. Pearson for $n \leqq 14$, R. A. Fisher-F. Yates for $n \leqq 17$, A. N. Lowan-H. E. Salzer for $n \leqq 20$. H. T. Davis gives

$$
g_{20}=0.00256702255, \quad g_{100}=0.0002974763
$$

Integration of the Gregory-Newton interpolation formula

$$
f(x+n h)=(1+\Delta)^{n} f(x)
$$

yields the Gregory formula, so that

$$
\begin{equation*}
g_{n}=(-1)^{n+1} \int_{0}^{1}\binom{x}{n} \mathrm{~d} x \tag{1}
\end{equation*}
$$

Result (1) was obtained by J. W. L. Glaisher [see Whittaker-Robinson 166. See also Milne 196, Bahvalov 166, Krylov-Šul'gina 61].

Substituting $x=-s$ from (1) it follows that

$$
g_{n}=(-1)^{n+1} \int_{-1}^{0}\binom{-s}{n} \mathrm{~d} s
$$

[see Phillips-Taylor 132].

* Presented March 14, 1975 by D. S. Mitrinović.

From (1), substituting $t=1-x$, it follows that

$$
\begin{equation*}
g_{n}=-\int_{0}^{1}\binom{n-2+t}{n} \mathrm{~d} t \tag{2}
\end{equation*}
$$

[compare with Nielsen 4].
Starting from (1) it is possible to derive the generating function for the coefficients g_{n}

$$
\begin{aligned}
\sum_{n=1}^{+\infty} g_{n} t^{n} & =\sum_{n=1}^{+\infty}\left((-1)^{n+1} \int_{0}^{1}\binom{x}{n} \mathrm{~d} x\right) t^{n}=\int_{0}^{1}\left(\sum_{n=1}^{+\infty}(-1)^{n+1}\binom{x}{n} t^{n}\right) \mathrm{d} x \\
& =\int_{0}^{1}\left(1-(1-t)^{x}\right) \mathrm{d} x=\left.\left(x-\frac{(1-t)^{x}}{\log (1-t)}\right)\right|_{x=0} ^{x=1}
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
1+\frac{t}{\log (1-t)}=\sum_{n=1}^{+\infty} g_{n} t^{n} \quad(|t| \leqq 1) . \tag{3}
\end{equation*}
$$

[See: KunZ 170-171, ISaacson-Keller 318, Boole 55, Mineur 183].
Using (3) and the development

$$
-\log (1-t)=\sum_{k=1}^{+\infty} \frac{1}{k} t^{k} \quad(|t|<1)
$$

the known recurrent expression

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1}{n+1-k} g_{k}=\frac{1}{n+1} \tag{4}
\end{equation*}
$$

is obtained. [See, for example: Kelly 57, Berezin-Žitkov 266].
Formula (4) is one of the developments of the n-th order deierminant, quoted by Whittaker-Robinson 130

$$
g_{n}=(-1)^{n+1}\left|\begin{array}{ccccc}
\frac{1}{2} & 1 & 0 & 0 & \cdots \\
\frac{1}{3} & \frac{1}{2} & 1 & 0 & \\
\frac{1}{4} & \frac{1}{3} & \frac{1}{2} & 1 & \\
\frac{1}{5} & \frac{1}{4} & \frac{1}{3} & \frac{1}{2} & \\
\vdots & & & &
\end{array}\right|
$$

Starting from

$$
\frac{t}{(t-1) \log (1-t)}=\sum_{n=0}^{+\infty} c_{n} t^{n}, \quad \sum_{k=0}^{n} \frac{c_{k}}{n+1-k}=1
$$

P. Henrici 253-254 gives $g_{n}=c_{n}-c_{n-1}$.
R. V. Hamming 149 presents the calculation of g_{n} by the method of undetermined coefficients.

Starting from the Euler-Maclaurin formula

$$
\frac{1}{h} \int_{x}^{x+n h} f(t) \mathrm{d} t=\sum_{m=0}^{n} f(m)-\frac{f(0)+f(n)}{2}-\sum_{k=1}^{+\infty} \frac{h^{2 k-1} B_{2 k}}{(2 k)!}\left(f^{(2 k-1)}(n)-f^{(2 k-1)}(0)\right)
$$

where $B_{2 k}$ are Bernoulli's numbers, and from

$$
\left(h \frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{k} f(x)=(\log (1+\Delta))^{k} f(x)
$$

the Gregory formula is ob:ained, so that this is another way for calculating the coefficients g_{n}. See: Scheid 117, Hildebrand 202, Ralston 135, Booth 182, Jeffreys-Swirles 45.

The relationship between the coeficients g_{n} with Bernoulli's numbers of first order

$$
g_{n}=\frac{(-1)^{n} B_{n}^{(n-1)}}{n!(n-1)}
$$

and with Bernoulli's polynomials

$$
g_{n}=\frac{(-1)^{n}}{n!} B_{n}^{(n)}(1)
$$

are known. [See Fletcher-Miller-Rosenhead-Comrie 108].
H. T. Davis has, on the basis of a formula equivalent to (2), and the expression

$$
\Gamma(x) \Gamma(1-x)=\frac{\pi}{\sin \pi x}
$$

derived the formula

$$
g_{n}=\frac{1}{\pi} \int_{0}^{1} \frac{\Gamma(1+s) \Gamma(n-s)}{\Gamma(n+1)} \sin \pi s \mathrm{~d} s,
$$

wherefrom, by means of the approximative formula

$$
\begin{equation*}
\frac{\Gamma(n+x)}{\Gamma(n)} \sim n^{x} \tag{5}
\end{equation*}
$$

he obtained the result

$$
\begin{equation*}
g_{n} \sim \frac{\Gamma(1+\xi)}{n\left(\log ^{2} n+\pi^{2}\right)} \quad(0 \leqq \xi \leqq 1, n \rightarrow+\infty) . \tag{6}
\end{equation*}
$$

Notice that inequality

$$
g_{n}<\frac{1}{n\left(\log ^{2} n \mp \pi^{2}\right)}
$$

holds for $n \geqq 14$.

We shall now give an improvement of formula (6). From (2) it follows that

$$
g_{n}=\frac{1}{n} \int_{0}^{1} \frac{\left(t-t^{2}\right) \Gamma(n+t-1)}{\Gamma(1+t) \Gamma(n)} \mathrm{d} t,
$$

wherefrom, by means of the approximation (5) we get

$$
\begin{equation*}
g_{n} \sim \frac{1}{\Gamma(1+\theta)} \frac{1}{n \log ^{2} n} \quad(0 \leqq 0 \leqq 1, \quad n \rightarrow+\infty) . \tag{7}
\end{equation*}
$$

Results (6) and (7) can be harmonized if the values of the gamma function are equal to unity, so that

$$
\begin{equation*}
g_{n} \sim \frac{1}{n \log ^{2} n} \quad(n \rightarrow+\infty) . \tag{8}
\end{equation*}
$$

From all the mentioned formulas only (4) is suitable for direct computer calculation of g_{n} but for small values of n, only. When g_{n} is calculated by means of (2), all previous coefficients $g_{1}, g_{2}, \ldots, g_{n-1}$ participate, which leads to error accumulation. One of the summands is $1 /(n+1)$, i.e. it is considerably greater than the result g_{n} which unfailingly provokes further decrease in accuracy. Finally, calculation time for the coefficient g_{n} is proportional to n, and that of all $g_{1}, g_{2}, \ldots, g_{n}$ is proportional to n^{2}.

We propose an algorithm where only a few coefficients $A(k, n)$ participase in the formation of g_{n}, so that the time needed for the calculation of the table of values $g_{1}, g_{2}, \ldots, g_{n}$ is proportional to n. From (1) it follows that

$$
g_{n}=(-1)^{n+1} \int_{-1 / 2}^{1 / 2}\binom{t+1 / 2}{n} \mathrm{~d} t=-\frac{1}{n!} \int_{-1 / 2}^{1 / 2} \prod_{k=1}^{n}\left(\frac{2 n-2 k-1}{2}-t\right) \mathrm{d} t
$$

wherefrom

$$
g_{n}=\int_{-1 / 2}^{1 / 2} \sum_{k=1}^{n+2} A(k, n) t^{k-2} \mathrm{~d} t
$$

where

$$
A(k, 0)=0 \quad(k>2), \quad A(2,0)=-1, \quad A(1, n)=0,
$$

$$
\begin{equation*}
A(k, n)=A(k, n-1)-\frac{1}{n}\left\{\frac{3}{2} A(k, n-1)+A(k-1, n-1)\right\} . \tag{9}
\end{equation*}
$$

Coefficients g_{n} are

$$
g_{n}=\sum_{m=1}^{\mathrm{I}(n+2) / 2 \mathrm{l}} \frac{A(2 m, n)}{(2 m-1) 4^{m-1}}
$$

where $x \mapsto[x]$ designates the function,, integral part of x ". Since the modulus of $A(k, n)$ decreases very rapidly with the increase of k in the calculation of g_{n}, it is sufficient to use the formula

$$
g_{n} \approx \sum_{m=1}^{[L / 2]} \frac{A(2 m, n)}{(2 m-1) 4^{m-1}} .
$$

Dimension L of the auxiliary vector A is determined from the sufficient con dition $L \leqq 20+D$, where D is the greatest number of the accurate decimal digits of the computer. Fig. 1 displays the computer realisation of the program GREGO, which calculates $G(N)$ for $N=1$ (1) M. For the variable L (dimension of vector A) the value 30 is assumed, since the program is intended for the computer operating with 10 significant digits at most. For the computer with a relative error 10^{-30} it is sufficient to assume $L=50$.

From (9) it follows that

$$
A(2, n)=\frac{\pi^{-1 / 2}}{2 n-1} \frac{\Gamma\left(n+\frac{1}{2}\right)}{\Gamma(n+1)}
$$

wherefrom we get

$$
A(2, n) \sim \frac{1}{2 \sqrt{\pi}}\left(n-\frac{1}{4}\right)^{-3 / 2}
$$

because

$$
\Gamma(n+1) / \Gamma\left(n+\frac{1}{2}\right) \sim \sqrt{n+\frac{1}{4}}
$$

is valid. Compare Mitrinović-Vasić 281.
Table 1 contains some values of coefficients g_{n} and c_{n}, related by $g_{n}=1 /\left(n\left(\log ^{2} n+\log n+c_{n}\right)\right)$. The last decimal digit of the numbers in Table 1 should not be considered as certain.

Table 1
D. S. Mitrinović, S. M. Jovanović, D. Đ. Tošıć and J. D. Kečkić have read this paper in manuscript and have made some valuable remarks and suggestions.

REFERENCES

1. Н. С. Бахвалов: Числениье методы. Москва 1973.
2. И. С. Березин - Н. П. Житков: Методы вычислений. Beograd 1963.
3. G. Boole: Calculus of finite differences. New York 1860.
4. A. T. Bоoth: Numerical methods. London 1955.
5. T. Clausen: J. Reine Angew. Math. 6 (1830), 287-289.
6. H. T. Davis: The summation of series. San Antonio 1962.
7. R. A. Fisher - F. Yates: Statistical tables for Biological, Agricultiral and Medical research. London - Edinburgh 1938.
8. A. Fletcher - J. C. P. Miller - L. Rosenhead - L. J. Comrie: An index of matematical tables. Oxford 1962.
9. R. W. Hamming: Numerical methods for scientists and engineers. Москва 1968.
10. P. Henrici: Elements of numerical analysis. New York, ... 1964.
11. F. B. Hildebrand: Introduction to numerical analysis. New York 1974.
12. F. B. Isaacson - H. B. Keller: Analysis of numerical methods. New York 1966.
13. H. Jeffreys - B. Swirles: Methods of mathematical Physics, II. Москва 1970.
14. L. G. Kelly: Handbook of numerical methods and applications. Reading-Menlo Park-London-Don Mills 1967.
15. В. И. Крылов - Л. Т. Шульгина: Справочная книга по численному интегрированию. Москва 1966.
16. K. S. Kunz: Numerical analysis. New York-Toronto 1957.
17. A. N. Lowan - H. E. Salzer: Table of coefficients in numerical integration formulae. J. Math. and Phys. 22 (1943), 49-50.
18. W. E. Milne: Numerical calculus. Princeton 1949.
19. H. Mineur: Techniques de calcul numérique. Paris - Liége 1952.
20. D. S. Mitrinović (saradnik P. M. Vasić): Analitičke nejednakosti. Beograd 1970.
21. H. P. Nielsen: Über die Restglieder einiger Formeln für mechanische Quadratur. Arkiv för Math., Astro. och Fysik. 4 (1903), Nr. 21.
22. K. Pearson: Biometrika 1 (1902), 265-303.
23. G. M. Phillips - P. J. Taylor: Theory and applications of numerical analysis. London-New York 1973.
24. A. Ralston: A first course in numerical analysis. New York - ... 1965.
25. F. Scheid: Theory and problems of numerical analysis. New York -... 1968.
26. E. Whittaker-G. Robinson: The calculus of observations. Beograd 1951.
