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498. THE CENTROID METHOD IN INEQUALITIES*

D. S. Mitrinovic and P. M. Vasic

1. INTRODUCTION

The concept of the centroid, introduced most likely by ARCHIMEDES,can
be applied in solving various mathematical problems. We mention, for example.
the papers of C. F. GAUSS [2] and L. FEJER [9]. In this paper we shall give
a chronological account of the use of centroid in developing inequalities, pointing
to some priorities which are neglected in the literature. Besides, using the centroid
method, we shall prove some general inequalities which present complementary
inequalities for the JENSEN inequality for convex functions. These inequalities
contain several results which were earlier derived in different ways. Some of our
inequalities are sharper than the known inequalities.

In mathematical literature (including the very authors who used the centroid
method) there exists a di'ffermce in opinion whether inequalities obtained by
the centroid method are really proved, or is the centroid method only a sort
of a geometric interpretation, i. e. a method which may suggest an inequality
which still remains to be proved analytically. The book [23] of M. B. BALK
brings an argumented explanation why the centroid methcd can be taken as a
method of proof just like any other method used in Mathematics for proving
various theorems.

2. HISTORY

2.1. Jensen's inequality. If f is a convex function on [a, b], then for any points

XI' ..., xnE [a, b] and any positive numbers p]' ..., Pn we have

(2.1.1 )

(

i: PiXi

]

i: P;f(Xi)

f i=] i=1
-- <n> = n .

2Pi 2Pi
;=1 ;=1

Thi'> inequality is known in the literature as JENSEN'S inequality. It was
proved under the assumption that f is a J-convex function, i. e. a function
such that

r(X+Y )~
f(x)+f(y)

.
2 2

and that PI' ..., Pn are positive numbers by J. L. W. V. JENSENin 1905 [7, 8].
He applied the famous inductive method used by CAUCHY[1] in the proof of

(X, yE[a, b])

* Received January 2, 1975 and presented by R. P. BOASand P. R. BEESACK.
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4 D. S. Mitrinovic and P. M. Vasic

the arithmetic-geometric mean inequality. However, inequality (2.1.1) appears,
under different assumptions, much earlier. JENSEN himself mentior:ed in the
appendix to his paper that O. HOLDER[5] proved inequality (2.1.1) in 1889,
supposing that f is a twice differentiable function on [a, b] such that f" (x) ~ 0
-on that interval. This supposition is in the case of twice differentiable functions
equivalent with the supposition that f is convex. The above inequality was proved,
after HOLDER,using the same assumptions by R. HENDERSON[6] in 1895. However,
as far back as 1875 a particular case of the above inequality, the case when
PI = . . . = Pn was proved by J. GROLOUS[3] by an application of the centroid
method. This is, as far as we could find, the first inequality for convex functions
to appear in the mathematical literature. J. GROLOUSalso introduced the assum-
ption that f" (x»O, but it can be seen from the text itself that it is enough
to assume that f is a convex function, in the geometric sense (see, for instance,
D. S. MITRINOVI<:;[30, p. 15] and N. BOURBAKI[21]).

Inequality (2.1.1) is certainly the inequality which was proved by the
centroid method the largest number of times. Among others, we mention that
it is proved by that method in the papers of H. LOB [10], M. N. NARASIMHA
IYENGAR[13], M. TOMIC [19], A. N. LOWAN [20], A. BARTON[29] and in the
book [23] of M. B. BALK. None of these authors mentions earlier papers, while
M. B. BALK mentions only paper [20] of A. N. LOWAN.

We shall give a proof of (2.1.1) by the centroid method in Section 3.

2.2. Cebysev's inequality. Let a = (al' ..., an) and b = (bl' ..., bn) be two real
sequences such that

and

Then the following inequality is valid

(2.2.1)

This inequality was proved by the centroid method by E. PICARD in 1881.
PICARD'S proof is given in [4] by CH. HERMITE.The same proof was reproduced
in paper [32]1.

In the book [23] of M. B. BALK there are two proofs of inequality (2.2.1)
(without any bibliographical information). ST. I. GHEORGHITZA[31] also gave a
version of the proof of (2.2.1) by the centroid method. We shall quote the
improved version of the GHEORGHITZAproof, supplied by Professor P. R. BEESACK
on the occasion of perusal of the first version of this paper.

Let PI, ..., Pn be points on the OX axis with abscissae bl, ..., bn
(bi~O, i= I, ..., n) respectively. Fix to the point Pk a mass ak~O(k= 1, ..., n).
The centroid of the system of masses ak at the points with abscissae bl- (I ~ k ~ n)
is given by

I Notice that in this paper, on page 5, 7 th row from below, the following sentence is
omitted by mistake: "... vont en s'6loignant de l'origine, car. . .".
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1 n
Now, consider the system of n equal masses a=- 2: ak (having the same

n k=l
total mass as the preceding) situated at the same points bp ..., bn- The new

I
o

Mass:

bn-l
I

x

o
Mass:

b2
I

bn-I
I

bn
I

"x
a = a - a = a

Fig. 1

mass distribution has clearly shifted to the left and so its centroid XT' has

XT' ~ XT' that is
n n

which implies (2.2.1).

Now, for the general case, there exist IX> 0, ~> 0 such that Ak ==ak + IX~ 0,
Bk=bk+~~O(k=l, ..., n). Moreover {Ad, {Bk} are also either both increasing
or both decreasing. Hence

which reduces to (2.2.1).

2.3. The inequality on rearrangements. By the same centroid method used in 2.2.
one can give a proof of the basic inequality on rearrangement::> of finite sequences
a=(ap ..., an), b=(bp ..., bn). Let a=(a~, ...,~) be the rearrangement of
a in increasing order, and a = (aj, ..., an) be. the rearrangement of a in decreasing

~ --u --

order, and define band b analogously. Then

(2.3.1)

a.
'I

a.
'n

I

b
'n

'"X

Fig. 2
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To apply the centroid method, assume first that all ai ~ 0 and interpret
the ai as the mass of a particle at abscissa b;(1 ~i~n). Then (with obvious
notation) the centroids of the three systems in question satisfy

n n n
"(i."h. " a.h " a:b-I I L I I L I I

X=i~1
~

o;;x=~o;;x=~,
n ~ n - n

2, _~i
i~1

2, hi
i~1

2, b~
i~1

which reduces to (2.3.1). If some ai<O, apply (2.3.1) to Ai=ai+cx>O. This
proof is given in [14], p. 262.

2.4. Some complementary inequalities. Let ai' bi(i= 1, ..., 11) be real numbers
such that

(2.4.1 ) U=I, ..., n).

Then the following inequalities are valid:
10 Inequality of POLYA-SZEGO[11] or [30, p. 60]:

~ a.2 ~ b.20;;
(M, M2 + m, m2)2

(
~ a. b.)2.

LiLt 1- Lit'
i~1 i=1 4m,m2M,M2 i~1

(2.4.2)

2° Inequality of KANTOROVIC [18] or [30, p. 60]:

(2.4.3) ..., n);

3° Inequality of GREUB-RHEINBOLDT [22] or [30, p. 60]:

n n (M M + m m )2

(
n

)
2

" p .a.2 " p .b.2<
'

2 '2 " p .a.b.'
I I L I 1= L I I I'

i=1 i~1 4m,m2M,M2 i=1

(2.4.4)
,

40 Inequality of SPECHT [24], [25] or [30, p. 79]:

(2.4.5)

where t<s, C = M" M~] (a;p) is the weighted mean of order sand
m,

1 1
- --

( t(CS-Ct) )
s

( s(Ct-CS) )
t

rs t=,
(s-t) (Ct-l) (t-s) (CLl)

(2.4.6)

1

(
cSj(CS-I)

)
S

rs,o= elog(CSj(CS-I»
,

1

(
(Ctj(ct-I»

)
t

ro, t = elog(dj(ct-I»
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5° Inequality of GHEORGHIU [12]:
1

(2.4.7)

where

(2.4.8)

For the history of these inequalities consult [30] . We shall give here only
the history of the centroid method applied to the mentioned inequalities. We
notice that we did not find inequality (2.4.7) quoted in the literature. Some
thirty years later J. B. DIAZ, A. J. GOLDMANand F. T. METCALF[27] obtained
the integral analogue of (2.4.7) (which can be, in fact, obtained directly from
(2.4.7».

In the mentioned article [12] ~. A. GHEORGHIUobtained inequalities (2.4.2)
and (2.4.7) by the centroid method. There are no bibliographical references
concerning the application of the centroid method to the inequalities in that paper.

In 1943, applying the centroid method, R. FRUCIIT [16] proved inequality
(2.4.3). He mentioned that he was inspired by the proof of inequalities

i~
a?~

~ C~ aY and
i~ ;i ~n2C~ airl

given in the same Journal by E. M. SALEME[15]. R. FRUCHT does not cite any
other literature. We now quote from the review of E. BECKENBACH:"The barycentric
method previou~ly has been used by ~. A. GHEORGHIU(Bull. Math. Roum. Sci. 35,
117-119(1933», to obtain the sharpened form of CAUCHY'Sinequality and also
an analogously sharpened form of the HOLDER-JENSENinequality" (it seems that
the word sharpened should be replaced by the word complementary). BECKENBACH
did not mention earlier papers which employ the centroid method.

As we shall see in Section 3, inequalities (2.4.4) and (2.4.5) can also be
proved by the centroid method.

2.5. Applying the centroid theorem M. TOMIC[19] proved the following theorem:
Let Xk and Yk (k = 1, ..., n) be real non decreasing numbers from (a, b), i. e.

(2.5.1) (k=l,...,n)

and let I be a convex and decreasing function in (a, b). Inequality

(2.5.2)
n n

.LI(xi);;;; .Ll(yJ
i~1 i~1

hold, provided that

(2.5.3)
k k

.LYi;;;; .LXi
i~1 i=1

(k=I,...,n).

We expose here the proof of M. TOMIC.
From (2.5.3) for k= 1 follows Y1;;;;xl' and monotony of I implies

(2.5.4)
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If x2;;:;Y2, denote by (AI' BJ and (aj, bj) the coordinates of the centroid
Tof MjM2, and the centroid Tj* of NjN2, where Mj=(yp f(Yj)), M2=
(Y2,f(Y2))' Nj =(xl'!(Xj)), N2=(X2,f(XJ). Then from (2.5.3) for k=2 we find

A =
Yl + Yz s: ~l + X2

= aj
2 - 2 j'

and hence

Bj =
!(Yl) + !(Y2)

~
!(x,) + !(x2)

= bl'
2 2

because in that case the segmentMj M2 is above the segment N] N2, abscissa Aj
of Tj is to the left from the abscissa of Tj *, and hence the centroid Tj is above
the centroid Tj *.

If X2 ~Y2' then we have !(Y2) ~!(X2)' which together with (2.5.4) yields

(2.5.5)

Hence, in both cases inequality (2.5.5) is valid.
Apply the same procedure to the points Tj, M3, Tj *, N3, where M3 =

(Y3' f(Y3))' N3 = (X3 ,f(X3))' Then, if X3;;:;Y3' segment T/ N3 is below the segment
Tj M3' On the other hand, from (2.5.3) for k = 3 we have

A =Yl + Y2+y, <Xl +x2+x,
=,

-
a2 .

- 3 3

Hence,

B2 =~

!(y,) + !(Y2) + !(y,) ~!(x,) + !(x2) + !(x,)
- b2.

3 3

If X3 ~ Y3' from the monotony of ! follows !(Y3) ~f(X3)' which together
with (2.5.5) implies

!(Yj) + !(Y2) + !(Y3) ~!(Xj) + !(X2) + !(X3)'

The theorem is now easily proved by mathematical induction.

2.6. H. KESTELMAN[26] proved the follow:ng result:
Suppose F is positive and continuous and G is positive and decreasing

for a;;:;x ;;:;b; then

(2.6.1 )

b b

J xF(x)G(x)dx J xF(x)dx
a

<
a

b b

J F(x)G(x)dx J F(x)dx

a a

H. KESTELMANmentioned the following: "Intuitively, the idea of the proof
is that the centroid of the region under the curve Y = F(x) G (x) is closer to the
y-axis than the centroid of the region under y=F(x): this is to be expected
because G decreases."

REMARK 1. For p (x) = !(x), !(x) ~ x, g (x) = G (x) CEBYSEV'Sinequality (see [30, p. 401, Theorem
10) yields inequality (2.6.1).
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3. A COMPLEMENTARY INEQUALITY FOR JENSEN'S INEQUALITY

3.1. Let f be a given function such that f(x)~O and f"(x)~O on [a, b].
Let Pj, ..., Pn be points with abscissae Xl' ..., xn, ordinates f(xj), ..., f(xn)
and with masses PI' ..., Pn' Let m = min Xj, M = max Xj. Then the set bounded
by the arc of the curve y = f(x) and the chord AB, where A = (m, f(m)),
B = (M, f(M) is convex.

From the family of curves Y=Af(x) (A>O) choose the curve which touches
the segment AB. Then the centroid of the set of point,> PI, ..., Pn is below
the arc of the curve Y = Af(x) and above the arc of the curve y = f(x), and hence

(3.1.1)

(

.i PiXi

]

.i P;f(xi)

(

.i PiXi

]

f ~ s:;,~j <A f ~
n - n - n

'L Pi L Pi L Pi
i=I i-I i-I

where A is a constant to be determined.
The equation of the chord AB is

(3.1.2)
f(M)-f(m) M f(m)-mf(M)

y= x+ .
M-m M-m

The conditions that the line (3.1.2) should be a tangent to y = Af(x) are
given by

(3.1.3) ~ f( ) _1(M)-f(m) M f(m)-mf(M)
X - x+ ,

M-m M-m

Elimination of A from

AI' (x) =
f(M)-f(m).

M-m

(3.1.3) and (3.1.4) yields

(3.1.4)

g (x) = (f(M) - f(m))f(x) - I' (x) ((f(M) - f(m)) x+Mf(m)- mf(M))= O.

Solution of the above equation is the abscissa of the contact point. We
prove that this equation has exactly one solution XoE (m, M).

Fir:.,t, we have

g' (x) = - ((f(M) - f(m)) x + Mf(m) - mf(M) )f" (x) = h (x)f" (x).

Now f" (x) ~ 0, and the linear function h has

h (m) = (m - M)f(m)::;; 0, h (M) = (m - M)f(M)::;; 0,

so providedf"(x»O, m<M and f(x»0, the graph of g can cut the x-axis
in at most one point of (m, M).

Furthermore,

g (m) g (M) = (' I' (m) -
f(M)-f(m» )(I' (M) -

f(M)-f(m» )f(m)f(M) (M - m)2,
M-m M-m
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and according to the mean value theorem and the fact that I' is an increasing
function (since I" (X»0), we have

g(m)g(M)~O.

Therefore, there exist exactly one solution Xo of the equation g(x) = 0 on
the interval (a, b), and so from (3.1.4) we obtain exactly one value for ),.

This value of A is also the solution of the equation

(3.1.5) A/ (I'-I (f(M)-f(m) ))
=
f(M)-f(m)

1'-1 (f(M)-f(m) )
+

Mf(m)-mf(M).

A(M-m) M-m A(M-m) M-m

Equality on the right side of (3.1.1) hclds if and only if the point of
contact of the segment AB and the curve y = I(x) coincides with the centroid
of the system of points PI, ..., Pn. In order to obtain this situation, the
centroid must lie on the straight line AB, which will happen if and only
if k (k<n) points among the points Pp ..., Pn coincide with A, and the remain-
ing n - k points coincide with B. Therefore, equality holds if and only if there
exist two subsequences (Xi' ..., Xi

k
) and (Xi

k
,..., Xi ) of sequence (XI' ..., Xn)

1 +1 n
such that every element of the first subsequence is equal to m and every
element of second subsequence is equal to M, and

k n
m ;, p. +M

2: p.
r::t 'r r=k+l 'r

xo= n

2: Pi
i~1

where Xo is a unique solution of the equation g (x) = 0 on (a, b).

REMARK 2. If f(x)<O for xE;:SC[a, hI. it is enough to consider the function F, defined by
F(x) ~ f(x)- min f(x).

xE'[a, bl

3.2. From the family of curves y = fl + I(x) (fl> 0) choose the one which has a
contact with the segment AB. Then the centroid of the system PI, ..., Pn is
below the arc of the curve y = fl + I(x), and above the arc of the curve y = I(x),
and so

(3.2.1 )

[

'
,i PiXi

]

.i P;f(Xi)

(

,i PiXi

]

I ~ S;,~I
< +1 ~

n - n -fl n
'

" p' )' P .
" P

'I ~ I L- t
i~1 i-I i-I

where fl is a constant to be determined.
The conditions that the line (3.1.2) should be a tangent to y = fl + I(x)

are given by

(3.2.2)
I( ) f(M)-f(m) Mf(m)-mf(M)

fl+ X = x+ ,M-m M-m

f' (x) =
f(M)-f(m)

M-m
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and we obtain the following value for [J.:

[J. =
f(M)-f(m)

1'-1
(

f(M)-f(m)
)
+
Mf(m)-mf(M) _/

(
1'-1

(

f(M)-f(m)

))
.

M-m M-m M-m M-m

REMARK 3.In (3.1.1)we have assumed that f(x);;;'O. This supposition was necessary in order
to prove the uniqueness of the solution of the equation g(x)=O. However, in this case, the
uniqueness of the contact point follows from the second equality (3.2.2), since f' is an increas-
ing function.

3.3. Consider the situation is which a mass is continuously distributed along an
arc between the points A and B and suppose that the distribution of mass is
defined by a function p. Then, the centroid coordinates are

h

J p (x) x y1+j' (x)' dx

a
XT= b

J p(x)y1+f'(X)2dx

b

J p(x)f(xh/1 + f' (x/ dx
a

YT= b

J P (xh/1 + I' (x)' dx
aa

so that the following inequalities hold

(

b
'

b

(

b

]

J P(X)XY1-i-f'(X)2dx

J

J p(x)f(x)y1+f'(x)'dx J p(x)xy1+f'(X)2dx

f a
<

a
< ' I

a
b = b =/\ b

'J p(x)y1+I'(X)2dx J p(x) y1 +1'(x)2dx J p(x)y1+f'(X)2dx
a a a

where A is the solution of (3.1.5), but with m, M replaced by a, b.
Given I (convex and nonnegative) and g (x) > 0, choose p (x) =g (x)

(1 + f' (X)2)-1/2 to obtain

(

J xg(X)dX

]

J f(x)g(x)dx

(

J xg(X)dX

]

I a
<

a
<A I

a
b = b - b

'J g (x) dx J g (x) dx J g (x) dx
a a a

(3.3.1)

where A is the solution of (3.1.5), with m, M replaced by a, b.
It should be noted that all results contained in paragraph 3 could be extended

to convex functions of several variables.

REMARK 4. The left hand side of (3.3.1) has been derived by ST. I. GHEORGHlTZA [31] by use
of the centroid method.

4. SOME APPLICA nONS

4.1. Let I(x) = x2 and consider the points with the abscissae Xj;~
Gj

(i = 1, . . . , n)
bi

and masses Pi"? (i= 1,... ,n). Then, for O<ml;£aj;£Ml' O<mz;£bi;£Mz (i=
E: 1, . . . , n), it follows that

. . Gi minGi ml
m=mmxj=mm-;;;,-=-,

bi max bj M2

M Gi maXGi M1
= max Xi = max - ;£ -: = - .

bi mmbj m2
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Equation (3.1.5) gives

(M )2
-+1

A=
(M+m)2

-
m .

4mM M
4-

m

In this case the inequality (3.1.1) reduces to

(4.1.1)

where m=min ai, M=max a;.
bi bi

However, 1 s: M s: M,/m2
=

M, M, .
- m - m,/M2 m,m2

Setting

, l' 1)g (x) = 4 (1 -
x2 '

we see that g is increasing for x ~ 1. From this, it follows that

(M, M2 + m, m2)2

4m,m2M,M2

Consequently, the inequality (4.1.1) is stronger than (2.4.4).

REMARK 5. For Pi ~ 1 (i ~ 1, . . . , n), the proof of the inequality (2.4.2) was given by ~. A.
GHEORGHIU [12] by use of the centroid method.

4.2. Let f(x) = xP (p> 1) and consider the points having the abscissae Xi = ai bi -q/p

(i= I, ..., n) and masses biqPi (i= 1, ..., n). Then, if O<m] ~ai~MI' O<m2~
'£bi~M2, we find

m = min ai bi-q/p ~ (min aJ (max bJ-q/p = m1 M2
-q/p,

M = max ai bi -q/p ~ (max aJ (min bJ-q/p = M] m2 -q/p.

In this case, the inequality (3.1.1) reduces to

(4.2.1)
n ~ n ~ ~ n

C'2Piat)P C'2pibiq)q ~AP LPiaibi,
i~l i=l i~l

where

(4.2.2)

If function g, defined by
xP-lg(x)=

(x-1)'/p(xP-x)(p-1J/p'
(4.2.3)
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is increasing, for x ~ I, then inequality (4.1.1) is sharper than inequality (2.4.7).
According to computations accomplished by D. V. SLAVICon IBM 1130 it seems
that this assumption is true. Naturally, it is to be analytically proved.

REMARK 6. For Pi~ 1 (i~ 1, ..., n) the proof of the inequality (2.4.7) has been obtained by
~. A. GHEORGHlU [12] by use of the centroid method.

4.3. Let f(x) = xsft and consider the points with the abscissae a/ (i = I, . . . , n)
and masses Pi (i= I, ..., n). Then f is convex for s>t>O or s>O>t and concave
for O>s>t. In the convex case, (3.1.1) becomes

(with ~ in concave case).

Since s > 0 in the convex case and s < 0 in concave case, this gives

M[S] (a; p) ~
-" s: 'A

S .
M~tJ (a; p) -

Now, (3.1.5) is the same as in 4.2. but with P = sit, so from (4.2.2) we
obtain 'AI/s=Fs,t in the case s>t>O.

The proof of the inequality (2.4.5) in the cases s>O>t and O>s>t is
similar.

Now, let t=O, and starting from the function f defined by f(x)= -log x
and the points with the abscissae a/ (i= I,..., n) and masses Pi (i= I, ..., n),
we find, from (3.2.1)

where fL is given by

I
mlogM-Mlogm

I ( M-m )fL= - + + og ,
M-m logM-logm

where m=mjS, M=Mjs. From this, we obtain Fs.o=elJ./s.

In the case 0> t the proof is similar.

REMARK 7. Applying the centroid method to function I defined by I(x) ~ -log x, K. DaCEY
[28] obtained inequality (2.4.5) for s = 1, t ~ O.

If we start from the function f defined by f(x) = -log x (O<x< I) and
the points with the abscissae a/ (O<ai< I) (i = I, . . . , n) and the masses Pi
(i = I, . . . , n), then (3.1.1) reduces to

M~] (a; p) ~ M~01(a;p)j/"A,
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where A is the unique solution of (3.1.5) which reduces to

~ l 'A (M-m) ~
log Mm-IogmM

A og - A +
logM-Iogm M-m

*
* *

Professor P. R. BEESACKhas read this paper and has given useful sug-
gestions, particularly in connection with the applications presented in Section 4.
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ADDED IN PROOF

1. While the paper was in print B. MEslHovrc has proved that functicn g
defined by (4.2.3), is increasing for p> 1 and x> 1. His proof reads:

Function g can be represented in the form

(1)

where

(2) xP-x
u(x)=-.

x-I

From (2) we get

(3) du
=

(p-l) xp_pXp-l + 1

dx (x-l)2

Consider the function h defined by
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and h (1) = 0,
u is for x> 1

Sinc<~for p> 1 and x> 1,

dlz
-=p(p-l) Xp-2 (x--l»O
dx

we have h (x»O (x> 1), so that, on the basis of (3), function
increasing. Having in view that lim u (x) = p - 1, we get

x-.l+
(4) u(x»p-l (x> 1).

On the other hand

so that on the bas;s

2--2dg 1 p du
-=- u (u-p+l)-,
dx p dx

of (4) and the fact that u is an increasing function for x> 1,

dg
0->

dx '

which means that, for x> 1, function g is increasing.

2. In connection with (2. 4. 4) see also a result of J. W. S. CASSELSgiven
in G. S. WATSON: Serial coorelations in regression analysis I. Biometrika 42,
327-341 (1955).


