PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU PUBLICATIONS DE LA FACULTÉ D'ÉLECTROTECHNIQUE DE L'UNIVERSITÉ À BELGRADE

SERIJA: MATEMATIKA I FIZIKA - SÉRIE: MATHÉMATIQUES ET PHYSIQUE

№ 461 - № 497 (1974)

497. A CONTRIBUTION TO YOUNG'S INEQUALITY*

Milan J. Merkle

The author of this paper is an undergraduate student at the Faculty of Electrical Engineering, University of Belgrade. This is his first contribution to Mathematics.

Editorial Committee

1. Let f be a real, continuous and increasing function on [0, c], where c > 0. If f(0) = 0, $a \in [0, c]$, $b \in [0, f(c)]$ then

(1)
$$\int_{0}^{a} f(x) dx + \int_{0}^{b} f^{-1}(x) dx \ge ab$$

Inequality (1) is the well known YOUNG's inequality. This paper discusses the upper bound of

$$F(a, b, f) = \int_{0}^{a} f(x) \, \mathrm{d}x + \int_{0}^{b} f^{-1}(x) \, \mathrm{d}x.$$

- 2. Let f be a real valued function which satisfies the conditions:
- a) f is continuous on [0, c], c > 0,
- b) f is increasing on [0, c],
- c) f(0) = 0,

and let us also suppose that

- d) $a \in [0, c]$ and $b \in [0, f(c)]$,
- e) G = G(a, b) is a real function of arguments a and b,
- f) for every a and b, G(a, b) > 0.

In this paper we will prove two theorems.

Theorem 1. There is no function G which satisfies the conditions e) and f) such that the inequality

(2)
$$F(a, b, f) \leq G(a, b)$$

should be valid for each function F satisfying the conditions a), b), c) and for each a and b satisfying the condition d).

* Presented July 1, 1974 by I. B. LACKOVIĆ.

Proof. We shall prove that for each a and b and for each given function G it is possible to construct a function f such that the inequality (2) is not true. Suppose that a, b and that the function G are given. The function f defined by $f(x) = (G(a, b) + 1)(e^x - 1)$ satisfies the conditions a), b), c), and we have

(3)
$$\int_{0}^{a} f(x) dx = (G(a, b) + 1)(e^{a} - a).$$

Because of the inequality $e^a - a \ge 1$, from (3) follows

(4)
$$\int_{0}^{a} f(x) \, \mathrm{d}x \ge G(a, b) + 1 > G(a, b).$$

From (4) follows F(a, b, f) > G(a, b) which was to be proved.

Lemma 1. Suppose that the conditions a), b), c), d) are satisfied. Hence

$$(5) af(a) \ge bf^{-1}(b)$$

is equivalent to

(6)
$$f(a) \ge b.$$

Proof. Let (6) be true. From the monotonicity of the function f^{-1} , (6) implies

(7)
$$f^{-1}(f(a)) \ge f^{-1}(b)$$
 i.e. $a \ge f^{-1}(b)$.

From (6) and (7) follows (5). Let (5) be true. Suppose that

$$(8) f(a) < b.$$

From the monotonicity of the function f^{-1} , from (8) follows

(9)
$$a < f^{-1}(b).$$

From (8) and (9) follows $af(a) < bf^{-1}(b)$ which contradicts (5). Hence, from (5) follows (6).

Lemma 2. Suppose that the conditions a), b), c), d) are satisfied. Then

(10)
$$\int_{0}^{a} f(x) \, \mathrm{d}x + \int_{0}^{f(a)} f^{-1}(x) \, \mathrm{d}x = af(a)$$

and

(11)
$$\int_{0}^{b} f^{-1}(y) \, \mathrm{d}y + \int_{0}^{f^{-1}(b)} f(y) \, \mathrm{d}y = bf^{-1}(b).$$

If the conditions of the above Lemma are satisfied then the functions $\int_{0}^{u} f(x) dx$ and $\int_{0}^{v} f^{-1}(x) dx$ are continuous convex functions, complementary in YOUNG's sense (see for example [1] or [2]). For the proof of Lemma 2 see [2].

Theorem 2. Suppose that the conditions a), b), c), d) are satisfied. Then the following inequality holds

(12)
$$F(a, b, f) \leq \max(af(a), bf^{-1}(b)).$$

Proof. If
$$f(a) \ge b$$
 then $\int_{0}^{b} f^{-1}(y) dy \le \int_{0}^{f(a)} f^{-1}(y) dy$ and the inequality (12)

follows from the following

$$F(a, b, f) \leq \int_{0}^{a} f(x) \, \mathrm{d}x + \int_{0}^{f(a)} f^{-1}(x) \, \mathrm{d}x = af(a).$$

In the case when we have $f(a) \leq b$ the proof follows by interchanging a and b and f and f^{-1} . This completes the proof of the theorem.

EXAMPLES. The functions $f(x) = x^{p-1}$ (p>1) and $g(x) = \log(1+x)$ satisfy the conditions of our theorems for $x \ge 0$. By substitution of these two functions in the inequality (12) we obtain the following two inequalities

$$\frac{a^p}{p} + \frac{b^q}{q} \le \max(a^p, b^q), \ \frac{1}{p} + \frac{1}{q} = 1$$

and

$$(1+a) \log (1+a) - (1+a) + e^b - b \le \max (a \log (1+a), b (e^b - 1))$$

where $a, b \ge 0$.

REFERENCES

- 1. D. S. MITRINOVIĆ (saradnik P. M. VASIĆ): Analitičke nejednakosti. Beograd 1970.
- 2. M. A. KRASNOSEL'SKII, YA. B. RUTICKII: Convex functions and Orlicz spaces. Groningen 1961.