PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU publications de la faculté d’électrotechnique de l’universite a belgrade

SERIE: ELECTRONIQUE, TELECOMMUNICATIONS, AUTOMATIQUE № 461 — № 497 (1974)
494. FUNCTIONAL EQUATIONS FOR WALLIS AND GAMMA FUNCTIONS*

Ilija B. Lazarević and Alexandru Lupaş

The aim of this note is to find all convex solutions of the functional equation

$$
\begin{equation*}
f(x+1)=\frac{x+1}{x+\theta} f(x), \quad x \in[0,+\infty) \tag{1}
\end{equation*}
$$

where $f: \mathbf{R}_{+} \rightarrow \mathbf{R}, \mathbf{R}_{+}=[0,+\infty)$ and θ is a prescribed number on $(0,1)$. Setting $f(0)=1 / \Gamma(\theta)$ we shall see that the unique solution is the „Wallis function" $W(\cdot, \theta): \mathbf{R}_{+} \rightarrow \mathbf{R}$ defined as

$$
W(x, \theta)=\frac{\Gamma(x+1)}{\Gamma(x+\theta)} .
$$

Further we establish some inequalities for the Wallis function. At the end of this paper a new characterization of the Gamma function through functional equation is given.
Theorem 1. Let $A \in \mathbf{R}_{+}, \alpha \in(0,+\infty), \theta \in(0,1)$ be fixed elements. There is a unique solution $f: \mathbf{R}_{+} \rightarrow \mathbf{R}$ of (1) defined by

$$
f(x)=\alpha \frac{\Gamma(\theta) \Gamma(x+1)}{\Gamma(x+\theta)}
$$

which is convex on $(A,+\infty)$ and such that $f(0)=\alpha$.
Proof. It is easy to see that for a natural number n

$$
f(x+n)=\frac{(x+n)(x+n-1) \cdots(x+1)}{(x+n+\theta-1)(x+n+\theta-2) \cdots(x+\theta)} f(x), \quad x \in \mathbf{R}_{+}
$$

or
(2)

$$
f(x+n)=\frac{\Gamma(x+n+1) \Gamma(x+\theta)}{\Gamma(x+n+\theta) \Gamma(x+1)} f(x), \quad x \in \mathbf{R}_{+} .
$$

Therefore

$$
f(y)=f([y]+\{y\})=\frac{\Gamma(y+1) \Gamma(\{y\}+\theta)}{\Gamma(y+\theta) \Gamma(\{y\}+1)} f(\{y\}), \quad y \in[1,+\infty)
$$

[^0]which confirms that it is sufficient to suppose $x \in[0,1)$. Let $n \geqq 2+[A]$. Since f is convex (non-concave) on ($A,+\infty$) we may write
$$
[n-1, n ; \quad f] \leqq[n, n+x ; \quad f] \leqq[n, n+1 ; \quad f], \quad x \in(0,1),
$$
where the symbol $[a, b ; f]$ denotes the divided difference.
Using (1) and the above inequalities one obtains
$$
\frac{1-\theta}{n} f(n) \leqq \frac{f(n+x)-f(n)}{x} \leqq \frac{1-\theta}{n+\theta} f(n)
$$
which can be written as
$$
\frac{n+x(1-\theta)}{n} f(n) \leqq f(n+x) \leqq \frac{n+\theta+x(1-\theta)}{n+\theta} f(n) .
$$

But from these inequalities as well as from (2), for $x \in(0,1)$ we have

$$
\frac{n+x(1-\theta)}{n} f(n) \leqq \frac{\Gamma(n+x+1) \Gamma(x+\theta)}{\Gamma(n+x+\theta) \Gamma(x+1)} f(x) \leqq \frac{n+\theta+x(1-\theta)}{n+\theta} f(n) .
$$

From these inequalities we may write

$$
\begin{align*}
& \frac{\alpha(n+x(1-\theta)) \Gamma(\theta)}{n \Gamma(x+\theta)} \Gamma(x+1) \tag{3}\\
& F_{n}(x, \theta)
\end{aligned} \begin{aligned}
& \\
& \\
& \leqq \frac{\alpha(x)}{(n+\theta+x(1-\theta)) \Gamma(\theta) \Gamma(x+1)} \\
& (n+\theta) \Gamma(x+\theta) \\
& n
\end{align*}(x, \theta)
$$

where

$$
F_{n}(x, \theta)=\frac{\Gamma(n+1)}{\Gamma(n+\theta)} \cdot \frac{\Gamma(n+x+\theta)}{\Gamma(n+x+1)} .
$$

We remark that (3) is trivially verified at the point $x=0$, i.e., the inequalities (3) are valid on $[0,1$).

According to a well-known theorem by H. Bohr and I. Mollerup [3] (see also $[\mathbf{1}-\mathbf{2}]$) the restriction at $(0,+\infty)$ of the Gamma function, is the unique logarithmic-convex function on $(B,+\infty), B \geqq 0$, which satisfies

$$
\Gamma(x+1)=x \Gamma(x), \quad \Gamma(1)=1 .
$$

This means that for $0<a<b<c<+\infty$ the inequality

$$
[a, b, c ; \ln \Gamma(\cdot)]>0
$$

implies

$$
(\Gamma(b))^{c-a}<(\Gamma(a))^{c-b}(\Gamma(c))^{b-a} .
$$

Setting $a=z, b=z+\xi, c=z+1, \xi \in(0,1)$, we get

$$
\frac{(\Gamma(z+1))^{\xi}}{\Gamma(z+\xi)}>(\Gamma(z))^{\xi-1},
$$

or

$$
\begin{equation*}
\frac{\Gamma(z+1)}{\Gamma(z+\xi)}>z^{1-\xi}, \quad z \in(0,1), \tag{4}
\end{equation*}
$$

which holds also at $z=0$.

On the other hand the following may be proved (see [4], Lemma 1): If $g: \mathbf{R}_{+} \times(0,1) \rightarrow(0,+\infty)$ is such that for all $(z, \theta) \in \mathbf{R}_{+} \times(0,1)$

$$
\frac{\Gamma(z+1)}{\Gamma(z+\theta)}>g(z, \theta)
$$

then

$$
\frac{\Gamma(z+1)}{\Gamma(z+\theta)}<\frac{z+\theta}{g(z+\theta, 1-\theta)}, \quad \theta \in(0,1) .
$$

In this manner, by means of (4), we conclude with the inequalities

$$
\begin{equation*}
z^{1-\theta}<\frac{\Gamma(z+1)}{\Gamma(z+\theta)}<(z+\theta)^{1-\theta}, \quad(z, \theta) \in \mathbf{R}_{+} \times(0,1) \tag{5}
\end{equation*}
$$

Put $z=n, z=n+x$ respectively in (5); we find

$$
n^{1-\theta}<\frac{\Gamma(n+1)}{\Gamma(n+\theta)}<(n+\theta)^{1-\theta}
$$

and

$$
\frac{1}{(n+x+\theta)^{1-\theta}}<\frac{\Gamma(n+x+\theta)}{\Gamma(n+x+1)}<\frac{1}{(n+x)^{1-\theta}} .
$$

From these inequalities as well as from (2), by mutual multiplications of the corresponding members we get

$$
\left(\frac{n}{n+x+\theta}\right)^{1-\theta}<F_{n}(x, \theta)<\left(\frac{n+\theta}{n+x}\right)^{1-\theta}, \quad(x, \theta) \in \mathbf{R}_{+} \times(0,1)
$$

In conclusion, (3) implies that for $x \in \mathbf{R}_{+}, \theta \in(0,1)$,

$$
\begin{aligned}
\frac{\alpha(n+x(1-\theta))}{n}\left(\frac{n}{n+x+\theta}\right)^{1-\theta} \cdot \frac{\Gamma(\theta) \Gamma(x+1)}{\Gamma(x+\theta)} & \leqq f(x) \\
& \leqq \frac{\alpha(n+\theta+x(1-\theta))}{n+\theta}\left(\frac{n+\theta}{n+x}\right)^{1-\theta} \cdot \frac{\Gamma(\theta) \Gamma(x+1)}{\Gamma(x+\theta)} .
\end{aligned}
$$

For $n \rightarrow+\infty$ the general convex solution of (1)

$$
f(x)=\alpha \frac{\Gamma(\theta) \Gamma(x+1)}{\Gamma(x+\theta)}
$$

is found and the theorem is proved thereby.
We note that a similar functional equation was treated by J. Anastassiadis [1] by a different method and supposing that f is positive and loga-rithmic-convex.
Theorem 2. Let $W(\cdot, \theta): \mathbf{R}_{+} \rightarrow \mathbf{R}_{+}$be the Wallis function. There exists a decreasing, convex function $\varepsilon_{\theta}: \mathbf{R}_{+} \rightarrow(a, b]$ where

$$
a=\frac{\theta}{2}, \quad b=(\Gamma(\theta))^{\frac{1}{\theta-1}}, \quad \theta \in(0,1)
$$

such that

$$
\begin{equation*}
W(x, \theta)=\left(x+\varepsilon_{\theta}(x)\right)^{1-\theta}, \quad x \in \mathbf{R}_{+} \tag{6}
\end{equation*}
$$

Proof. On account of (5) we observe that there is a function $\varepsilon_{\theta}: \mathbf{R}_{+} \rightarrow \mathbf{R}$ with

$$
W(x, \theta)=\left(x+\varepsilon_{\theta}(x)\right)^{1-\theta}, \quad 0<\varepsilon_{\theta}(x)<\theta, \quad x \in \mathbf{R}_{+}
$$

Since

$$
\begin{equation*}
\varepsilon_{\theta}(x)=W(x, \theta)^{\frac{1}{1-\theta}}-x \tag{7}
\end{equation*}
$$

it is clear that $\varepsilon_{\theta}: \mathbf{R}_{+} \rightarrow(0, \theta)$ is convex on its domain. Indeed according to the first theorem $W(\cdot, \theta)$ is convex on \mathbf{R}_{+}. On the other hand, for $x>0$ we have

$$
\begin{aligned}
\varepsilon_{\theta}^{\prime}(x) & =\frac{x+\varepsilon_{\theta}(x)}{1-\theta}\left(\frac{\Gamma^{\prime}(x+1)}{\Gamma(x+1)}-\frac{\Gamma^{\prime}(x+\theta)}{\Gamma(x+\theta)}\right)-1 \\
& <(x+\theta) \psi^{\prime}(x+\theta)-1<\frac{1}{x+\theta-1} .
\end{aligned}
$$

where $\psi(x)=\frac{\mathrm{d}}{\mathrm{d} x} \ln \Gamma(x)$. Further, $\varepsilon_{\theta}{ }^{\prime}$ is increasing on \mathbf{R}_{+}and

$$
\varepsilon_{\theta}^{\prime}(x) \leqq \lim _{x \rightarrow+\infty} \varepsilon_{\theta}^{\prime}(x) \leqq 0,
$$

that is ε_{θ} is a decreasing function. This implies

$$
\varepsilon_{\theta}(x) \leqq \varepsilon_{\theta}(0), \quad x \in \mathbf{R}_{+},
$$

with equality only for $x=0$. From (7), $\varepsilon_{\theta}(0)=(\Gamma(\theta))^{\frac{1}{1-\theta}}$, and in this way

$$
\varepsilon_{\theta}(x) \leqq b, \quad x \in \mathbf{R}_{+} .
$$

Finally, by means of Stirling series we prove that

$$
\lim _{x \rightarrow+\infty} \varepsilon_{\theta}(x)=\frac{\theta}{2}
$$

i.e.,

$$
a=\frac{\theta}{2}=\lim _{x \rightarrow+\infty} \varepsilon_{\theta}(x)<\varepsilon_{\theta}(x), \quad x \in \mathbf{R}_{+},
$$

which completes the proof.
Corollary. For $(x, \theta) \in \mathbf{R}_{+} \times(0,1)$ we have

$$
\left(x+\frac{\theta}{2}\right)^{1-\theta}<\frac{\Gamma(x+1)}{\Gamma(x+\theta)}<\left\{x+(\Gamma(\theta))^{\frac{1}{1-\theta}}\right\}^{1-\theta}
$$

The case $\theta=1 / 2$ leads to G. N. Watson's result [6], namely

$$
\left(x+\frac{1}{4}\right)^{1 / 2}<\frac{\Gamma(x+1)}{\Gamma\left(x+\frac{1}{2}\right)} \leqq\left(x+\frac{1}{\pi}\right)^{1 / 2}, \quad x \in \mathbf{R}_{+} .
$$

For other information regarding the inequalities involving Gamma function see [5].

Now we intend to find all solutions of the functional equation

$$
f(x+1)=x f(x), \quad x \in(0,+\infty)
$$

in some classes of functions.

Theorem 3. There exists a unique function $f:(0,+\infty) \rightarrow \mathbf{R}$, positive on $(0,1)$ and satisfying:
(i) $f(x+1)=x f(x), \quad x \in(0,+\infty)$;
(ii) f is logarithmic-concave of the second order on $(A,+\infty), A$ being a prescribed non-negative number;
(iii) $f(1)=1$.

More precisely, this function coincides with the restriction at $(0,+\infty)$ of the Gamma function.

Proof. If n is a natural number, then any solution of (i) has the property

$$
\begin{equation*}
f(n+x)=x(x+1) \cdots(x+n-1) f(x) . \tag{8}
\end{equation*}
$$

Let $y \in(1,+\infty), y=[y]+\{y\}$; it is clear that

$$
f(y)=\{y\}(\{y\}+1) \cdots(y-1) f(\{y\}) .
$$

Therefore the positivity of f at $(0,1)$ implies that $f:(0,+\infty) \rightarrow \mathbf{R}$ is positive on its domain.

As usual, a logarithmic-concave function f of the second order on $(A,+\infty)$, has the properties: f is positive on $(A,+\infty)$ and $[a, b, c, d ; \ln f]<0$ for any points $A<a<b<c<d<+\infty$, which may be written as

$$
\begin{align*}
(f(b))^{(d-a)(c-a)(d-c)} \cdot & (f(d))^{(c-b)(b-a)(c-a)} \tag{9}\\
& <(f(a))^{(c-b)(d-c)(d-b)} \cdot(f(c))^{(d-a)(d-b)(b-a)}
\end{align*}
$$

If we select

$$
a=n-1, b=n+x-1, c=n, d=n+x, x \in(0,1), n \geqq 2+[A]
$$

we obtain

$$
\begin{equation*}
(f(n+x-1))^{1+x}(f(n+x))^{1-x}<(f(n-1))^{1-x}(f(n))^{1+x} . \tag{10}
\end{equation*}
$$

Taking into account (i) as well as the fact that $f(n)=(n-1)$! and $f(n+x-1)=\frac{1}{n+x-1} f(n+x)$, from (10) we get

$$
\begin{aligned}
{[f(n+x)]^{2} } & <((n-1)!)^{2} \frac{(n-x-1)^{1+x}}{(n-1)^{1-x}} \\
& =((n-1)!)^{2} n^{2 x}\left(1+\frac{1}{n-1}\right)^{1-x}\left(1+\frac{1-x}{n+x-1}\right)^{-1-x} .
\end{aligned}
$$

On the other hand [5, p 262,§ 3.6.3] we have

$$
\left(1+\frac{1-x}{n+x-1}\right)^{1+x}>e^{\frac{2\left(1-x^{2}\right)}{2 n+x-1}},\left(1+\frac{1}{n-1}\right)^{1-x}<e^{\frac{1-x}{n-1}}
$$

Therefore

$$
\begin{aligned}
f(n+x) & <n^{x}(n-1)!\sqrt{\left(1+\frac{1}{n-1}\right)^{1-x}\left(1+\frac{1-x}{n+x-1}\right)^{-1-x}} \\
& <n^{x}(n-1)!\sqrt{e^{\frac{1-x}{n-1}-\frac{2\left(1-x^{2}\right)}{2 n+x-1}}} \\
& <n^{x}(n-1)!e^{\frac{1-x}{2(n-1)}}
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
f(n+x)<n^{x}(n-1)!e^{\frac{1}{2(n-1)}}, \quad x \in(0,1), \quad n \geqq 2+[A] . \tag{11}
\end{equation*}
$$

Further, with

$$
a=n+x-1, \quad b=n, \quad c=n+x, \quad d=n+1, \quad x \in(0,1), \quad n \geqq 2+[A],
$$

from (9) we have

$$
(f(n))^{2-x}(f(n+1))^{x}<(f(n+x-1))^{x}(f(n+x))^{2-x}
$$

i.e.,

$$
(n-1)!(n-1)^{x}<f(n+x), \quad x \in(0,1), \quad n \geqq 2+[A] .
$$

This last inequality holds also if n is substituted by $n+1$. Therefore we have

$$
\begin{equation*}
\frac{n!n^{x}}{n+x}<f(n+x), \quad x \in(0,1), n \geqq 2+[A] . \tag{12}
\end{equation*}
$$

On account of (8), (11) and (12) we conclude

$$
\begin{equation*}
\frac{n!n^{x}}{x(x+1) \cdots(x+n)}<f(x)<\frac{n!n^{x}}{x(x+1) \cdots(x+n)} \cdot \frac{n+x}{n} e^{\frac{1}{2(n-1)}} . \tag{13}
\end{equation*}
$$

Since

$$
\Gamma(x)=\lim _{n \rightarrow+\infty} \frac{n!n^{x}}{x(x+1) \cdots(x+n)},
$$

if $n \rightarrow+\infty$, the inequalities (13) show that

$$
f(x)=\Gamma(x) \quad \text { on } \quad(0,1) .
$$

It is clear that from the above remarks (see (8)) we have

$$
f(x)=\Gamma(x) \quad \text { on } \quad(0,+\infty) .
$$

Now let k be a natural number, and let us denote

$$
F_{k}(x)=(-1)^{k+1} \ln f(x)
$$

where the function $f:(0,+\infty) \rightarrow \mathbf{R}$ is positive. In a similar way, w.th the proof of the above theorem, we may establish
Theorem 4. If $f:(0,+\infty) \rightarrow \mathbf{R}$ is positive on $(0,1)$ and satisfies the following conditions
(i) $f(x+1)=x f(x), \quad x \in(0,+\infty)$,
(ii) F_{k} is a convex function of the order k on $(A,+\infty), A$ being a fixed non-negative number,
(iii) $f(1)=1$,
then we have

$$
f(x)=\Gamma(x) \text { for } \quad x \in(0,+\infty)
$$

REFERENCES

1. J. Anastassiadis: Définition des fonctions eulériennes par des équations fonctionnelles. Mémorial des Sciences Mathématiques, fascic. CLVI. 1964.
2. E. Artin: The Gamma Function. New York 1964.
3. H. Bohr, I. Mollerup: Loerebog i matematisk Analyse, t. III. Kopenhagen, 1922.
4. A. Lupaş: Inequalities involving Gamma-function. To appear.
5. D. S. Mitrinović (in cooperation with P. M. Vastć): Analytic Inequalities. Berlin Heidelberg - New York, 1970.
6. G. N. Watson: A note on Gamma functions. Proc. Edinburgh Math. Soc. (2) 11 (1958/59); Edinburgh Math. Notes 42 (1959), 7-9.

Katedra za matematiku
Elektrotehnički fakultet
11000 Beograd, Jugoslavija
Institutul de calcul
Cluj, R. S. România

[^0]: * Presented May 5, 1974 by D. D. Adamović.

