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494. FUNCTIONAL EQUATIONS FOR WALLIS AND
GAMMA FUNCTIONS*

llija B. Lazarevi¢ and Alexandru Lupag

The aim of this note is to find all convex solutions of the functional
equation
x+1

1 f(x+1)=mf(x), x€[0, + o)

where f:R,_— R, R_=[0, + o) and 6 is a prescribed number on (0, 1). Set-
ting f(0)=1/I"(0) we shall see that the unique solution is the ,,Wallis fun-
ction” W (., 0):R, — R defined as

Tee+)

W(x, 0)= .
(x, 9) T'(x+90)

Further we establish some inequalities for the WALLIS function. At the
end of this paper a new characterization of the Gamma function through
functional equation is given.

Theorem 1. Let ACR,, a<(0, + »), 6&(0,1) be fixed elements. There is a
unique solution f:R_— R of (1) defined by

_ TOT@E+D
Jx)=a T (x+6)

which is convex on (A, + ) and such that f(0)= a.

Proof. 1t is easy to see that for a natural number n

(x+n)(x+n—1)--(x+1)
- R
St (x+n+e—1)(x+n+6—2)..-(x+e)f(x)’ xER,
or
Tx+n+)T (x+6)
2 = s R..
@ Jx+m) I‘(x+n+6)I‘(x+1)f(x) xER,
Therefore
T+DI{y}+9)

f(y)=f([y]+{y})=}(y+e)rmf({y}), yEIL, + o)

* Presented May S, 1974 by D. D. Apamovié.
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246 I. B. Lazarevi¢ and A. Lupas

which confirms that it is sufficient to suppose x<={0, 1). Let n=2 +[4]. Since f
is convex (non-concave) on (A, + o) we may write

[n—1, n fl=n, ntx; fl=[n, n+1; fl, x&(0, 1),

where the symbol [a, b; f] denotes the divided difference.
Using (1) and the above inequalities one obtains

l_—_ef(n) éi(ﬂi’.‘tﬁ(_”)él_”gf(n)
n x n+6

which can be written as

n+x(1—9_f(n)§f(n+x)§n+6+x(1—6) 7).
n n+0

But from these inequalities as well as from (2), for x&(0, 1) we have

n+x(1-—-0) Tr+x+DT(x+6) n+0+x(1—90)
n f(n)éI‘(n+x+6)1"(x+l)f(x) == re S @

From these inequalities we may write

3) alntx A=) TOT&+D f (x 0)<f(x)

nl (x+9)
<a(n+0+x(1=0))TO) T (x+1)
- n+0) T'(x+6) F,(x, 6)
where
F,(x, 0) = T'n+1) . I'ntx+0)

C(n+08) T(m+x+1)’

We remark that (3) is trivially verified at the point x=0, i.e., the ine-
qualities (3) are valid on [0, 1). ’ :

According to a well-known theorem by H. BoHR and 1. MoLLERUP [3]
(see also [1-—2]) the restriction at (0, + o) of the Gamma function, is the
unique logarithmic-convex function on (B, + «), B=0, which satisfies

'x+DH=xIx), I'(h=1.
This means that for 0<<a<<b<<c<C+ oo the inequality
[a, b, ¢; InT'(-)]>0
T @) "< @) ([T E)’™.
Setting a=z, b=z+E, c=z+1, £5(0, 1), we get

T+ > (T @)+,

implies

T+
or I
z+1) q_¢
4) ——_—I‘(Z+E)>Z , z&(0,1),

which holds also at z=0.
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On the other hand the following may be proved (see [4], Lemma 1): If
g:R, x(0,1)— (0, + ) is such that for all (z, O)cR, x(0, 1)

e+l
P@+9)

T'(z+1) z+06
T(z+6) g(z+96, 1—86)’

——2>g(z, 0),
then

8 (0, 1).

In this manner, by means of (4), we conclude with the inequalities

) Zl_e<T(z+1)

T s <(z+0)-% (2, )R, x(0, I).

Put z=n, z=n+x respectlvely in (5); we find

T@+1)

1-6
T0i0) <(n+0)

nl-%<

and

1 T'(n+x+6) 1
1-6 < 1—-6
(n+x+90) Fa+x+1) (@+x)

From these inequalities as well as from (2), by mutual multiplications of the
corresponding members we get

( - )l <F, (x,e)<(”iz) , (% OER, x(0, 1).

n+x+0

In conclusion, (3) implies that for xR, 6€(0, 1),

oc(n+x(1—6))( n )1"0 IT'®Tx+1)
n n+x+6 T+ =f(x)

a(n+6+x(1—6))(n+e)l ® TOIx+1)
n+0 n+x Txx+0) -

For n— + oo the general convex solution of (1)

f(x)=ar(e)r(x+1)

TPx+9)
is found and the theorem is proved thereby.

We note that a similar functional equation was treated by J. ANASTASs-
sIADIS [1] by a different method and supposing that f is positive and loga-
rithmic-convex.

Theorem 2. Let W (-, 0):R,— R, be the Wallis function. There exists a de-
creasing, convex function g4: R, — (a, b} where

1
a=%, b=(T ()1,  6c(0, 1)

such that

(6 W(x, 0)= (;C +e(x)' ", xER,.



248 I. B. Lazarevi¢ and A, Lupas

Proof. On account of (5) we observe that there is a function ¢:R, - R

with
W(x, 0)=(x+e(x)' ", 0<eo(x)<h, xER,.
Since
1

U gg(x)=W(x, 0)1-¢—x,
it is clear that g5:R,_ — (0, 8) is convex on its domain. Indeed according to
the first theorem W (-, 9) is convex on R,. On the other hand, for x>0 we
have

c ,(x):x+se(x)(F'(x+1)_I"(x+6) 1
0 1-6 \I'(x+1) 1‘(x+e))

<(x+0)J' (x+0) —-1<- 1.
x+0—1

where ¢(x)=diln1"(x). Further, ¢’ is increasing on R, and
X

gg (x)= lim g (x) <0,

X—>+ 0
that is g5 is a decreasing function. This implies

€e(X)§€e(0), x€R+,

1
with equality only for x=0. From (7), & (0)=(F(6))IT°, and in this way
g (X)), xXER,.

Finally, by means of STIRLING series we prove that

. 0
lim gg(x)=—,
x>+ 2

i.e.,
a=_2_= lim e(x)<es(x), xCR,,

x>+
which completes the proof.
Corollary. For (x, 9)cR, x(0, 1) we have _
1
0\-0 T'(x+1) —11-8
— ——— I ©))i-o .
(x+ 2) <F'(x+0)<{x+( ) }
The case 6 =1/2 leads to G. N. WATSON’s result [6], namely
(x+i)l/2<£(x__+_1)_§(x+l)”2, XER+.
4 ( 1 ) ™
Dlx+—
2
For other information regarding the inequalities involving Gamma fun-
ction see [5].
Now we intend to find all solutions of the functional equation
S+ =xf(x), xE€(0, + )

in some classes of functions.
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Theorem 3. There exists a unique function f:(0, + )—> R, positive on (0, 1) and
satisfying:

() fx+D=xf(x), x&(0, + o)

(ii) f is logarithmic-concave of the second order on (A, + =), A being a
prescribed non-negative number;

(iii) f(1)=1.
More precisely, this function coincides with the restriction at (0, + o) of the
Gamma function.

Proof. If n is a natural number, then any solution of (i) has the property
8 fr+x)=x(x+1).- - (x+n-—-1)f(x).
Let y&(1, + ), y=[y]+{y}; it is clear that

FO=0r O+ -O-DfED.

Therefore the positivity of f at (0, 1) implies that f:(0, + ) — R is positive
on its domain.

As usual, a logarithmic-concave function f of the second order on
(4, + ), has the properties: f is positive on (4, + o) and [a, b, ¢, d; In f]1<0
for any points 4A<<a<\b<c<d<{+ o0, which may be written as

(9) (f(b)) (d—a)(c=a)(d—a) (f(d)) (c—b) (b—a) (c—a)

<(f@) VIR (f () IR,
If we select

a=n~1, b=n+x—1, c=n, d=n+x, x&(0, 1), n=2+[A4]
we obtain
(10) (Fr+x— D) (ot 0) ™ <(fr— D) *(F ().

Taking into account (i) as well as the fact that f(n)=(@m—1)! and

fln+x—-1)= " _lf(n+x), from (10) we get
2 (n—x—1)1+=x
[f(n+x)P<((n~-1)!) T
2 5 1 \l—x 1—x \—-1-x
=((n-1)1)*n2 (1+n—_7) (1+ n+x_1) .

On the other hand [S, p 262, § 3.6.3] we have

2(1~x2) 1—

—_ 1+ i A A 1— joliiad
<1+ ! x) T >e2ntal, <1+—1 ) et
n+x—1 n—1

>
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Therefore
f0r+xy<nx0r—lﬁ\/(1+_l_yx(1+ 1—x y*‘x
n—1 n+x—1
/ 1—x  2(1—x?)
<n*(n—1)1Ven-1 2ntx-1
1—x
<n*(n—1)! 26D
i.e.,
_r
(11) fr+x)y<m(n—1'e2t-D, x=(0,1), -n=224[4]

Further, with
a=n+x—1, b=n c=n+x, d=n+1, x=(0, 1), n=2+][4],
from (9) we have

(F@) > (fa+ D)) <(far+x- D) (f(n+ )P~

m—-DIn-1y<fm+x), x<@©0,1), n=2+[4].

This last inequality holds also if » is substituted by n+ 1. Therefore we
have

ie.,

(12) B f4x), x€(0, 1), n=2+[A]

n+x
On account of (8), (11) and (12) we conclude

1

I nx n! nx n+xX STy
13 - nm - PTX3eeD.
(13) x(x+1)---(x+n) f(x) x(x+1)---(x+m n ¢
Since

T'(x)= lim Ll

nsto X(x+1) - (x+n) ’
if n— + oo, the inequalities (13) show that
S(®»=T(x) on (0,1).
It is clear that from the above remarks (see (8)) we have
FG)=T() on (0, +w).
Now let £ be a natural number, and let us denote
Fi ()= (= D¥+tn f(x)
where the function f:(0, + «)—> R is positive. In a similar way, w.th the
- proof of the above theorem, we may establish
Theorem 4. If f:(0, + o)— R is positive on (0, 1) and satisfies the following
conditions

O fx+D=xf(x), xC(0, + ),

(i) F, is a convex function of the order k on (A, + »), A being a
fixed non-negative number,

(i) f(1)=1,
then we have

fx)=T"(x) for x&(0, + o).
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