PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU publications de la faculté d'Electrotechnique de l'universite a belgrade

493.

AN INEQUALITY FOR POLYNOMIALS*

Alexandru Lupas**

The purpose of this paper is to give the best constant $K_{n}(s, \alpha, \beta)$ in the inequality

$$
\left\|f^{(s)}\right\| \leqq K_{n}(s, \alpha, \beta)\|f\|_{2}
$$

where f is a polynomial of degree n,

$$
\left\|f^{(s)}\right\|=\max _{x \in[-1,+1]}\left|f^{(s)}(x)\right|
$$

and

$$
\|f\|_{2}=\left\{\int_{-1}^{1} w(x)|f(x)|^{2} \mathrm{~d} x\right\}^{1 / 2}
$$

with

$$
w(x)=(1-x)^{\alpha}(1+x)^{\beta}, \quad \alpha>-1, \quad \beta>-1 .
$$

For $\alpha=0, \beta=0$ the constant $K_{n}(s, 0,0)$ is due to Gilbert Labelle in [1].
In this paper we use the following notation:
a)

$$
A_{k}^{(\alpha, \beta)}=\left\{\frac{(2 k+\alpha+\beta+1) k!\Gamma(k+\alpha+\beta+1)}{2 \alpha+\beta+1 \Gamma(k+\alpha+1) \Gamma(k+\beta+1)}\right\}^{1 / 2} .
$$

b) $\quad J_{k}(x)=A_{k}^{(\alpha, \beta)} \cdot P_{k}^{(\alpha, \beta)}(x), k=0,1, \ldots$, is the orthonormal system of $\mathrm{J}_{\mathrm{ACOBI}}$ polynomials, $(\alpha, \beta$ fixed).
c)

$$
C_{k, s}^{(\alpha, \beta)}=\frac{k!(2 k+\alpha+\beta+1) \Gamma(k+\alpha+\beta+s+1)}{\Gamma(k+\alpha+1) \Gamma(k+\beta+1)}\binom{k+q}{k-s} .
$$

d)

$$
q=\max (\alpha, \beta)
$$

Theorem. If f is a polynomial of degree n and $q \geqq-\frac{1}{2}$, then holds the inequality

$$
\begin{equation*}
\left\|f^{(s)}\right\| \leqq K_{n}(s, \alpha, \beta)\|f\|_{2} \tag{1}
\end{equation*}
$$

where the best constant is given by
(2) $K_{n}(s, \alpha, \beta)=$

$$
=\left\{\frac{s!}{2^{2 s+\alpha+\beta+1}} \sum_{k=s}^{n} \frac{k!(2 k+\alpha+\beta+1) \Gamma(k+\alpha+\beta+s+1)}{\Gamma(k+\alpha+1) \Gamma(k+\beta+1)}\binom{k+\alpha+\beta+s}{s}\binom{k+q}{k-s}^{2}\right\}^{1 / 2}
$$

[^0]The equality in (1) holds for the polynomials

$$
\begin{equation*}
f^{*}(x, \alpha, \beta)=C \cdot \sum_{k=s}^{n} C_{k, s}^{(\alpha, \beta)} \cdot P_{k}^{(\alpha, \beta)}(x) \tag{3}
\end{equation*}
$$

where C is a constant and $P_{k}^{(\alpha, \beta)}, k=0,1, \ldots$, are the Jacobi polynomials.
Proof. Taking into account that

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left\{P_{k}^{(\alpha, \beta)}(x)\right\}=\frac{k+\alpha+\beta+1}{2} P_{k-1}^{(\alpha+1, \beta+1)}(x)
$$

(see [2]), for $k=s, s+1, \ldots, n$ we have

$$
\left|J_{k}^{(s)}(x)\right|^{2}=A_{k, s}\left|P_{k-s}^{(\alpha+s, \beta+s)}(x)\right|^{2}
$$

with

$$
A_{k, s}=\frac{s!k!(2 k+\alpha+\beta+1) \Gamma(k+\alpha+\beta+s+1)}{2^{2 s+\alpha+\beta+1} \Gamma(k+\alpha+1) \Gamma(k+\beta+1)}\binom{k+\alpha+\beta+s}{s} .
$$

Let us suppose that $\max (\alpha, \beta) \geqq-\frac{1}{2}$. It is known (see [2], theorem 7.32.1) that

$$
\max _{x \in[-1,+1]}\left|P_{k-s}^{(\alpha+s, \beta+s)}(x)\right|=\left|P_{k-s}^{(\alpha+s, \beta+s)}(\bar{x})\right|=\binom{k+q}{k-s}
$$

where the maximum is attained by $\bar{x}=-1(q=\beta)$ or, in the case $q=\alpha$ by $\bar{x}=+1$.
Therefore on $[-1,+1]$ we have

$$
\begin{equation*}
\sum_{k=s}^{n}\left|J_{k}^{(s)}(t)\right|^{2} \leqq \sum_{k=s}^{n} A_{k, s}\binom{k+q}{k-s}^{2} \tag{4}
\end{equation*}
$$

with equality for

$$
\begin{equation*}
t=-1 \quad(\beta \geqq \alpha) \text { or } t=1 \quad(\alpha \geqq \beta) . \tag{5}
\end{equation*}
$$

Now let $f(x)=\sum_{k=0}^{n} a_{k} x^{k}$; then

$$
f(x)=\sum_{k=0}^{n} f_{k} \cdot J_{k}(x)
$$

where

$$
f_{k}=\int_{-1}^{1} w(x) f(x) J_{k}(x) \mathrm{d} x, \quad k=0,1, \ldots, n
$$

and it is known that

$$
\|f\|_{2}=\left\{\sum_{k=0}^{n}\left|f_{k}\right|^{2}\right\}^{1 / 2} .
$$

Thus for an arbitrary t holds the inequality

$$
\begin{equation*}
\left|f^{(s)}(t)\right| \leqq\left\{\sum_{k=s}^{n}\left|J_{k}^{(s)}(t)\right|^{2}\right\}^{1 / 2} \cdot\|f\|_{2} \tag{6}
\end{equation*}
$$

with equality for

$$
\begin{equation*}
f(x)=C \cdot \sum_{k=s}^{n} J_{k}^{(s)}(t) \cdot J_{k}(x) . \tag{7}
\end{equation*}
$$

In view of (4)-(6), we have

$$
\left\|f^{(s)}\right\| \leqq K_{n}(s, \alpha, \beta)\|f\|_{2}
$$

where $K_{n}(s, \alpha, \beta)$ is given by (2).
The conditions (5)-(7) furnish the extremal polynomials

$$
f^{*}(x, \alpha, \beta)=C \cdot \sum_{k=s}^{n} C_{k, s}^{(\alpha, \beta)} \cdot P_{k}^{(\alpha, \beta)}(x)
$$

and this completes the proof of the above theorem.
Corollary. If we denote by $q^{\prime}=\min (\alpha, \beta)$, then for every polynomial of degree n holds the inequality

$$
\|f\| \leqq\|f\|_{2} \cdot \sqrt{\frac{\Gamma(n+\alpha+\beta+2)}{2^{\alpha+\beta+1} \Gamma(q+1) \Gamma\left(n+q^{\prime}+1\right)}}\binom{n+q+1}{n} .
$$

The equality is valid for the polynomials

$$
f^{*}(x)=C \cdot \sum_{k=0}^{n} \frac{(2 k+\alpha+\beta+1) \Gamma(k+\alpha+\beta+1)}{\Gamma\left(k+y^{\prime}+1\right)} P_{k}^{(\alpha, \beta)}(x) .
$$

Proof. We have

$$
\begin{equation*}
K_{n}(0, \alpha, \beta)=\left\{\sum_{k=0}^{n}\left|J_{k}(\vec{x})\right|^{2}\right\}^{1 / 2}, \quad|\vec{x}|=1 \tag{8}
\end{equation*}
$$

Moreover

$$
J_{k}(x)=\left(M_{k} x+N_{k}\right) \cdot J_{k-1}(x)+D_{k} \cdot J_{k-2}(x), \quad k=2,3, \ldots,
$$

where N_{k}, D_{k} are real numbers and

$$
M_{k}=\frac{2 k+\alpha+\beta}{2}\left[\frac{(2 k+\alpha+\beta+1)(2 k+\alpha+\beta-1)}{k(k+\alpha+\beta)(k+\alpha)(k+\beta)}\right]^{1 / 2} .
$$

At the same time it is known that (see [2])

$$
\begin{equation*}
\sum_{k=0}^{n}\left|J_{k}(t)\right|^{2}=\frac{1}{M_{n+1}}\left[J_{n+1}^{\prime}(t) J_{n}(t)-J_{n}^{\prime}(t) J_{n+1}(t)\right] \tag{9}
\end{equation*}
$$

Because

$$
J_{n+1}^{\prime}(\bar{x})=\sqrt{A_{n+1,1}}\binom{n+q+1}{n}, \quad J_{n}(\bar{x})=A_{n}^{(\alpha, \beta)}\binom{n+q}{n}
$$

the equalities (8) and (9), with $t=\bar{x}$, give us the form of the best constant.

REFERENCES

1. Gilbert Labelle: Concerning polynomials on the unit interval. Proc. Amer. Math. Soc. 20 (1969), 321-326.
2. G. Szegö: Orthogonal polynomials. New York 1959.

Institutul de calcul-Cluj al Academiei R. S. România and Mathematisches Institut A der Universität-Stuttgart.

[^0]: * Presented January 4, 1974 by R. R. Janić.
 ** This paper partially supported by the Alexander von Humboldt Foundation.
 16 Publikacije Elektrotehnickog fakulteta

