467.

 ON \boldsymbol{N}-FUNCTION AND ITS DERIVATIVE*Ivan B. Lacković

The chief aim of this paper is to prove the necessary and sufficient condition for two functions to be mutually right - inverse. The same paper contains some inequalities for \boldsymbol{N}-functions and some problems connected with them.

1. For a function $p(t)$ defined for $0 \leqq t \leqq+\infty$, we shall say that it belongs to the class P, if $p(t)$ satisfies
$1^{\circ} p(0)=0$,
$2^{\circ} p(t)>0$ for all $t>0$,
$3^{\circ} p(t)$ is non-decreasing for all $t \geqq 0$,
$4^{\circ} p(t)$ is continuous from the right for all $t \geqq 0$,
$5^{\circ} p(+\infty)=\lim _{t \rightarrow+\infty} p(t)=+\infty$.
It is known [1] that for every function $p(t) \in P$, the so called right inverse function $q(s)$ could be defined by

$$
\begin{equation*}
q(s)=\sup _{p(t) \leqq s} t . \tag{1}
\end{equation*}
$$

It is easily proved that $q(s) \in P$, too (see [1]). On the other hand it is known [1] that for the functions $p(t)$ and $q(s)$, defined as above inequalities

$$
\begin{equation*}
p(q(s)) \geqq s, q(p(t)) \geqq t, p(q(s)-a) \leqq s, q(p(t)-a) \leqq t \tag{2}
\end{equation*}
$$

hold, where $t, s \geqq 0$ and $a>0$ and naturally $p(t)-a \geqq 0$ and $q(s)-a \geqq 0$.
For functions $M(u)$ and $N(v)$ defined by

$$
\begin{equation*}
M(u)=\int_{0}^{|u|} p(t) \mathrm{d} t, \quad N(v)=\int_{0}^{|v|} q(s) \mathrm{d} s \tag{3}
\end{equation*}
$$

it is said (see [1]) that they are complementary N-functions. There is a lot o proofs stating that Young's inequality

$$
\begin{equation*}
u v \leqq M(u)+N(v) \tag{4}
\end{equation*}
$$

is valid for all $u, v \in R$.

[^0]If $u \geqq 0$ and $v \geqq 0$ then from (3) we have $M(u) \leqq u p(u)$ and analogously $N(v) \leqq v q(v)$, which according to (4) means that inequality

$$
\begin{equation*}
u v \leqq u p(u)+v q(v) \tag{5}
\end{equation*}
$$

holds for all $u \geqq 0, v \geqq 0$ and $p(t), q(s) \in P$ where functions $p(t)$ and $q(s)$ are inverse in the sense of (1). Inequality (5) is proved in [3] starting from inequality (4). However in [3] it was assumed that $p(t)$ was a continuous and a strictly increasing function, and that $q(s)$ is the ordinary inverse function of the function $p(t)$. It was noticed in [3] that inequality (5) is weaker but more effective than inequality (4).
A. C. ZaAnen considered in [5] functions $p_{1}(t)$, defined for all $t \geqq 0$ such that $p_{1}(t)$ is nondecreasing for $t \geqq 0, p_{1}(0)=0, p_{1}(t)$ is left continuous for all $t \geqq 0$. The inverse function of $p_{1}(t)$ could be defined similarly as in (1). ZaANEN has proved that if $t, s \geqq 0$, then from $s<p_{1}(t)$ it follows $t>q_{1}(s)$ and from $s>p_{1}(t)$ it follows that $t \leqq q_{1}(s)$ (see lemma 1 in [5]). This result of ZaANEN could be formulated in the form of the following Lemma.

Lemma 1. If functions $p_{1}(t)$ and $q_{1}(s)$ are defined as above, and if they are inverse in the aforementioned sense, then the inequality

$$
\begin{equation*}
p_{1}(t) q_{1}(s)+t s \leqq t p_{1}(t)+s q_{1}(s), \tag{6}
\end{equation*}
$$

holds for all $t \geqq 0, s \geqq 0$. Equality in (6) holds if and only if $s=p_{1}(t)$ or $t=q_{1}(s)$.
It is easy to see that inequality (6) holds even if $p(t)$ is substituted for $p_{1}(t)$ and if $q(s)$ is substituted for $q_{1}(s)$, where functions p and q are from the class P and q is defined by (1). Equality then holds if and only if $t=q(s)$ or $s=p(t)$.

Inequality (6) for the inverse functions $p(t), q(s) \in P$ is sharper than inequality (5) because $p(t) q(s) \geqq 0$ for all $t, s \geqq 0$.
2. There is a certain number of papers in literature regarding so called inverse inequalities, for example, Hölder's and Young's inequalities. In connection with that see for example [2, 3, 4].

In the present paper we shall prove a lemma regarding the inversion of inequality (6) obtained in ZaAnen's paper [5].

Lemma 2. Let $p(t) \in P$. Then, if for any function $q(s)$, defined for all $s \geqq 0$ such that $q(0)=0$, inequality

$$
\begin{equation*}
p(t) q(s)+t s \leqq t p(t)+s q(s) \tag{7}
\end{equation*}
$$

holds for all $t, s \geqq 0$, then

$$
q(s)=\sup _{p(t) \leqq s} t,
$$

i.e. $q(s)$ is then the right inverse function of $p(t)$.

Proof. Since $p(t) \in P$, there is a right inverse function $q^{*}(s)$ of the function $p(t)$ defined by (1) and also $q^{*}(s) \in P$. Therefore, inequality (2) holds for functions $p(t)$ and $q^{*}(s)$. Since inequality (7) is equivalent to

$$
\begin{equation*}
(p(t)-s)(q(s)-t) \leqq 0, \tag{8}
\end{equation*}
$$

putting $t=q^{*}(s) \geqq 0(s \geqq 0)$ in (8), we get

$$
\begin{equation*}
\left(p\left(q^{*}(s)\right)-s\right)\left(q(s)-q^{*}(s)\right) \leqq 0 . \tag{9}
\end{equation*}
$$

Since, from (2) follows $p\left(q^{*}(s)\right) \geqq s$ for $s \geqq 0$, from (9) we get

$$
\begin{equation*}
\left.q(s) \leqq q^{*}(s) \quad \text { (for all } s \geqq 0\right) \tag{10}
\end{equation*}
$$

On the other hand, if $s>0$, let us choose any $h>0$ so that $q^{*}(s)-h \geqq 0$. Such a choice of h^{\prime} is possible, bccause $q^{*}(s)>0$ holds if $q^{*}(s) \in P$ and if $s>0$. Hence, if we take $0<h_{1} \leqq h$, we get that $q^{*}(s)-h_{1} \geqq 0$. Introducing the substitution $t=q^{*}(s)-h_{1}$ into (8) we find

$$
\begin{equation*}
\left(p\left(q^{*}(s)-h_{1}\right)-s\right)\left(q(s)-q^{*}(s)+h_{1}\right) \leqq 0 . \tag{11}
\end{equation*}
$$

For this choice of s and h_{1}, according to (2) we get $p\left(q^{*}(s)-h_{1}\right) \leqq s$, and on the basis of (11) we get

$$
q(s)-q^{*}(s)+h_{1} \geqq 0 .
$$

Since the last inequality holds for all h_{1} such that $0<h_{1} \leqq h$, letting $h_{1} \rightarrow 0+$, we obtain

$$
\begin{equation*}
q(s) \geqq q^{*}(s) \quad(\text { for all } s>0) . \tag{12}
\end{equation*}
$$

From inequalities (10) and (12) we get

$$
\begin{equation*}
q^{*}(s)=q(s), \tag{13}
\end{equation*}
$$

for all $s>0$. Thus, since the previous equality (13) holds for all $s>0$, on the basis of right continuity of the function $q^{*}(s) \in P$ we get

$$
\lim _{s \rightarrow 0+} q^{*}(s)=\lim _{s \rightarrow 0+} q(s)=0 .
$$

Since $q(0)=0, q(s)$ is right continuous at the point $s=0$, which means that equality (13) is valid for all $s \geqq 0$. Hence the lemma is proved.

On the basis of the proof of Lemma 2, it follows immediately that the assumption $q(0)=0$ can be replaced by the supposition that $q(s)$ is right continuous at the point $s=0$.

From Lemma 1 and Lemma 2, we directly get the following theorem.
Theorem 1. Let $p(t) \in P$. Let the function $q(s)$ be defined for all $s \geqq 0$ and let $q(0)=0$ (or let $q(s)$ be right continuous for $s=0$).

Then the necessary and sufficient condition for the function $q(s)$ to be the right inverse function of the function $p(t)$ (or that $q(s)$ satisfies (1)), is that inequality (7) holds for all $t \geqq 0$ and $s \geqq 0$.

It is clear that $q(s)$ is a unique function for which the conditions of the above theorem are fulfilled. Furthermore, it is logical to ask whether the assumption $q(0)=0$, i.e. the assumption that $q(s)$ is right continuous for $s=0$ could be dropped from Theorem 1. A negative reply to the above question is provided by the following example.

Example. Function $p(t)=2 t(t \geqq 0)$ belongs to the class P. The right inverse function of this function is $q^{*}(s)=\frac{1}{2} s(s \geqq 0)$. On the other hand function

$$
q(s)=\frac{1}{2} s(s>0), \quad q(s)=-1(s=0)
$$

satisfies inequality (7) for all $t \geqq 0$ and $s \geqq 0$, which can be directly verified, but neither $q(s) \in P$ nor $q(s)$ is the right inverse function of the function $p(t)$.

In [3] page 124, theorems 170 and 171 , on the basis of inequality (5) it is concluded that if the series $\sum_{k=1}^{+\infty} a_{k} p\left(a_{k}\right)$ and $\sum_{k=1}^{+\infty} b_{k} q\left(b_{k}\right)$, where $a_{k} \geqq 0$ and $b_{k} \geqq 0(k=1,2, \ldots), p(t) \leftarrow P$ and $q(s)$ is defined by (1), are convergent, then the series $\sum_{k=1}^{+\infty} a_{k} b_{k}$ converges. On the other hand it was shown that the series $\sum_{k=1}^{+\infty} a_{k} p\left(a_{k}\right)$ can diverge in those cases when the series $\sum_{k=1}^{+\infty} a_{k} b_{k}$ is convergent for all convergent series $\sum_{k=1}^{+\infty} b_{k} q\left(b_{k}\right)$. However, using inequality (7) we can prove the following theorem.

Theorem 2. Let $a_{k} \geqq 0, b_{k} \geqq 0(k=1,2, \ldots)$ and let $p(t) \in P, q(s)$ being defined by (1). If the series

$$
\sum_{k=1}^{+\infty} a_{k} p\left(a_{k}\right) \quad \text { and } \sum_{k=1}^{+\infty} b_{k} q\left(b_{k}\right)
$$

converge then the series

$$
\begin{equation*}
\sum_{k=1}^{+\infty}\left(a_{k} b_{k}+p\left(a_{k}\right) q\left(b_{k}\right)\right) \tag{14}
\end{equation*}
$$

also converges and furthermore the series

$$
\sum_{k=1}^{+\infty} a_{k} b_{k} \quad \text { and } \quad \sum_{k=1}^{+\infty} p\left(a_{k}\right) q\left(b_{k}\right)
$$

are convergent.
The validity of the following two statements remains to be investigated:
(a) If the series (14) converges for every convergent series $\sum_{k=1}^{+\infty} a_{k} p\left(a_{k}\right)$ then the series $\sum_{k=1}^{+\infty} b_{k} q\left(b_{k}\right)$ also converges.
(b) Is it possible to derive Young's inequality from the inequality (7)?

Let $p(t)$ and $q(s)$ be the inverse functions of class P. Integrating (7) with respect to t, from 0 to $u>0$, we have

$$
q(s) \int_{0}^{u} p(t) \mathrm{d} t+s \frac{u^{2}}{2} \leqq \int_{0}^{u} t p(t) \mathrm{d} t+u s q(s)
$$

In the same manner, integrating the last inequality with respect to s, from 0 to $v>0$, we get

$$
M(u) N(v)+\frac{u^{2} v^{2}}{4} \leqq v \int_{0}^{u} t p(t) \mathrm{d} t+u \int_{0}^{v} s q(s) \mathrm{d} s
$$

Since partial integration yields

$$
\int_{0}^{u} t p(t) \mathrm{d} t=u M(u)-\int_{0}^{u} M(t) \mathrm{d} t, \quad \int_{0}^{v} s q(s) \mathrm{d} s=v N(v)-\int_{0}^{v} N(s) \mathrm{d} s,
$$

on the basis of the previously derived inequality we get:
Theorem 3. For any real numbers u and v and any complementary N-functions M (u) and $N(v)$ we have

$$
M(u) N(v)+|v| \int_{0}^{|u|} M(t) \mathrm{d} t+|u| \int_{0}^{|v|} N(s) \mathrm{d} s+\frac{u^{2} v^{2}}{4} \leqq|u v|(M(u)+N(v)) .
$$

If $u \geqq 0$ and $\nu \geqq 0$, then inequality

$$
M(u) N(v) \leqq u v(M(u)+N(v))
$$

follows directly from the above inequality. Introducing the substitutions $a=M(u)$ and $b=N(v)$ where $a>0$ and $b>0$, we get $a b \leqq(a+b) M^{-1}(a) N^{-1}(b)$, i.e. the inequality

$$
\frac{a b}{a+b} \leqq M^{-1}(a) N^{-1}(b)
$$

holds. On the other hand from Young's inequality, using the same substitutions we find that $M^{-1}(a) N^{-1}(b) \leqq a+b$. Hence we obtain:

Theorem 4. For any complementary N-functions $M(u)$ and $N(v)$ and any positive numbers a and b we have

$$
\frac{a b}{a+b} \leqq M^{-1}(a) N^{-1}(b) \leqq a+b
$$

This inequality is a generalisation of an inequality obtained in [1] (page 13 , inequality 2.10 .).

REFERENCES

1. M. A. Krasnoselskiĭ Ya. B. Rutickiĭ: Convex functions and Orlicz spaces. Groningen 1961.
2. D. S. Mitrinović (saradnik P. M. Vasić): Analitičke nejednakosti. Beograd 1970.
3. G. H. Hardy, J. E. Littlewood, G. Pólya: Inequalities. Cambridge 1952.
4. Z. W. Birnbaum, W. Orlicz: Über die Verallgemeinerung des Begriffes der zueinander konjuigerten Potenzen. Stud. Math. 3 (1931), 1-67.
5. A. C. ZaANEn: Note on certain class of Banach spaces. Nederl. Akad. Wetensch. Proc. 52 = Indag. Math. 11 (1949), 148-158.

[^0]: * Presented May 20, 1974 by A. C. Zabnen.

