PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU PUBLICATIONS DE LA FACULTÉ D'ÉLECTROTECHNIQUE DE L'UNIVERSITÉ À BELGRADE

SERIJA: MATEMATIKA I FIZIKA -- SÉRIE: MATHÉMATIQUES ET PHYSIQUE

№ 461 - № 497 (1974)

466. SOME REMARKS ON THE PAPER "A NOTE ON AN INEQUALITY" OF V. K. LIM*

Ljubomir R. Stanković and Ivan B. Lacković

Professor D. S. Mitrinović has drawn our attention to paper [2] and its review [3] and suggested that we examine whether the results of the mentioned paper can be proved by a direct application of known properties of convex functions.

1. In paper [2] V. K. LIM has proved the following two theorems:

Theorem A. Let a and b be two non-negative real numbers and $a+b \le c$. Then

$$a^r + (b+c)^r \ge (a+b)^r + c^r$$

for $r \ge 1$.

Inequality is reversed if 0 < r < 1, and equality holds if either b = 0 or r = 1.

Theorem B. Let Q_1, Q_2, \ldots, Q_m be non-negative numbers, r > 0 and

$$Q \geq \max(Q_1, Q_2, \ldots, Q_m).$$

(i) If $sQ = \sum_{i=1}^{m} Q_i$, for some real s, then

(2)
$$s Q^r \ge \sum_{i=1}^m Q_i^r \quad (r \ge 1), \qquad s Q^r \le \sum_{i=1}^m Q_i^r \quad (0 < r < 1).$$

Equality holds if one of the following holds:

(a) r = 1,

(b) $Q_i = 0$ for $1 \leq i \leq m$,

(c) s is an integer $(1 \le s \le m)$ such that $Q_i = Q$ for $1 \le i \le s$ and $Q_i = 0$ when i > s.

(ii) If $sQ + Q_0 = \sum_{i=1}^{m} Q_i$ for some real s, Q_0 where $0 < Q_0 < Q$, and either s = 0 or if $s \neq 0$, $sQ \ge Q_i$ for $1 \le i \le m$, then

(3)
$$sQ^r + Q_0^r \ge \sum_{i=1}^m Q_i^r \qquad (r \ge 1).$$

* Presented November 13, 1973 by P. M. VASIĆ.

4*

Equality holds if one of the following occurs:

- (a) r = 1,
- (b) s=0, $Q_0 = Q_i$ for some *i* and $Q_j = 0$ for $j \neq i$,

(c) s is an integer such that there are s Q_i 's equal to Q, one $Q_i = Q_0$ and the rest of Q_i 's equal to zero.

As it was noticed by H. T. CROFT [3] the conclusion (ii) of theorem B (i.e. inequality (3)) is not correct for arbitrary real number s. Counter example from [3] is

 $Q = Q_1 = Q_2 = 1$, $Q_0 = 0.5$, s = 1.5, m = r = 2.

On the other hand theorems A and B are immediate consequences of some, well known elementary properties of convex functions, as it will be shown in a much simpler way than in the paper [2].

2. Namely we will prove the following two theorems:

Theorem 1. Let a and b be nonnegative real numbers and let $a + b \le c$. Then for every convex functions $x \mapsto f(x)$ defined for all $x \ge 0$ the following inequality holds

(4)
$$f(a)+f(b+c) \ge f(a+b)+f(c).$$

If the function f is concave the above inequality is reversed.

In the case when $f(t) = t^r$ where $t \ge 0$ and where $r \ge 1$ or 0 < r < 1 Theorem 1 reduces to the Theorem A.

Proof. From the assumption of our theorem it follows that $a \le b \le c$ or $b \le a \le c$. If we introduce the notations $x_1 = b + c$, $x_2 = a$, $y_1 = c$, $y_2 = a + b$ then we have $x_1 \ge x_2$, $y_1 \ge y_2$, $x_1 + x_2 = y_1 + y_2$, i.e. the vector y is majorized by the vector x, where $x = (x_1, x_2)$, $y = (y_1, y_2)$ (which is, as usual denoted by x > y, see [1] page 162). Therefrom and from well known theorem of HARDY—LIT-TLEWOOD—PóLYA (see [1] page 164 theorem 1) it follows that for every convex function f the following inequality holds

$$f(x_1) + f(x_2) \ge f(y_1) + f(y_2)$$

in virtue of what the theorem is proved.

Theorem 2. Let us suppose that the numbers Q_1, \ldots, Q_m $(m \in N)$ are nonnegative and that $Q \ge \max(Q_1, \ldots, Q_m)$. If the real number s is such that $sQ = \sum_{i=1}^m Q_i$ then the following inequality holds

(5)
$$sf(Q) \ge \sum_{i=1}^{m} f(Q_i)$$

for every convex function $x \mapsto f(x)$, defined for all $x \ge 0$, for which we have f(0) = 0.

Proof. If Q = 0, then $Q_i = 0$ (i = 1, ..., m) so that (5) is reduced to equality, in virtue of f(0) = 0. Further we can suppose that Q > 0. Then as for

every convex function the inequality $f(ax) \leq af(x)$ holds for every $x \geq 0$ and $0 \leq a \leq 1$ we have

(6)
$$f(Q_i) = f\left(\frac{Q_i}{Q} Q\right) \leq \frac{Q_i}{Q} f(Q) \qquad (i = 1, \dots, m)$$

in virtue of $0 \le \frac{Q_i}{Q} \le 1$ (i = 1, ..., m). Therefrom adding inequalities (6) from i = 1 to i = m we get

(7)
$$\sum_{i=1}^{m} f(Q_i) \leq \frac{f(Q)}{Q} \sum_{i=1}^{m} Q_i = sf(Q),$$

which proves the theorem.

Theorem 2.1. Let us suppose that the numbers Q_1, \ldots, Q_m $(m \in N)$ are nonnegative and let $Q \ge \max(Q_1, \ldots, Q_m)$. If n is natural number such that

$$nQ+Q_0=\sum_{i=1}^m Q_i,$$

where $0 < Q_0 < Q$, then the following inequality

(8)
$$nf(Q) + f(Q_0) \ge \sum_{i=1}^m f(Q_i)$$

is valid, for every convex function $x \mapsto f(x)$, defined for all $x \ge 0$ and for which we have f(0) = 0.

Proof. In (8) the equality is valid if

(a)
$$Q = 0$$
 (then $Q_0 = Q_i = 0$ $(i = 1, ..., m)$),

(b) n = 0, $Q_0 = Q_{i_0}$ and $Q_j = 0$ for $j \neq i_0$.

If we suppose that Q > 0 then we have

$$nQ < nQ + Q_0 = \sum_{i=1}^m Q_i \leq mQ$$

wherefrom it follows that n < m.

Let us introduce the following notations

$$x_i = Q$$
 $(i = 1, ..., n)$ and $x_{n+1} = Q_0$ if $m = n+1$

$$x_i = Q$$
 $(i = 1, ..., n), x_{n+1} = Q_0, x_i = 0$ $(i = n+2, ..., m)$

if $m \ge n+2$, and $y_i = Q_i$ (i = 1, ..., m). Besides, we can suppose that $Q_i \ge Q_{i+1}$ without loss of generality. So, we have

$$x_1 \ge x_2 \ge \cdots \ge x_m \quad \text{and} \quad y_1 \ge y_2 \ge \cdots \ge y_m,$$
$$\sum_{i=1}^k x_i \ge \sum_{i=1}^k y_i \qquad (k=1,\ldots,m-1), \qquad \sum_{i=1}^m x_i = \sum_{i=1}^m y_i$$

i.e. x > y where $x = (x_1, \ldots, x_m)$, $y = (y_1, \ldots, y_m)$. In virtue of the cited theorem of HARDY—LITTLEWOOD—PÓLYA we can conclude that

$$\sum_{i=1}^m f(x_i) \ge \sum_{i=1}^m f(y_i).$$

Since we have

$$\sum_{i=1}^{m} f(x_i) = nf(Q) + f(Q_0), \quad \sum_{i=1}^{m} f(y_i) = \sum_{i=1}^{m} f(Q_i)$$

the validity of inequality (8) follows.

REMARK. In this paper we have taken convex functions to mean continuous and JENSEN convex functions, as defined in [1].

We express our deep gratitude to Professors D. S. MITRINOVIĆ and P. M. VASIĆ for help they have given us during the preparation of this paper.

REFERENCES

1. D. S. MITRINOVIĆ: Analytic Inequalities. Berlin-Heidelberg-New York 1970.

2. V. K. LIM: A note on an inequality. Nanta Math. № 1, 5 (1971), 38-40.

3. H. T. CROFT: Review 7001. Math. Reviews 45 (1973).