466. SOME REMARKS ON THE PAPER "A NOTE ON AN

INEQUALITY" OF V. K. LIM*

Ljubomir R. Stanković and Ivan B. Lacković

Professor D. S. Mitrinović has drawn our attention to paper [2] and its review [3] and suggested that we examine whether the results of the mentioned paper can be proved by a direct application of known properties of convex functions.

1. In paper [2] V. K. Lim has proved the following two theorems:

Theorem A. Let a and b be two non-negative real numbers and $a+b \leqq c$. Then

$$
a^{r}+(b+c)^{r} \geqq(a+b)^{r}+c^{r}
$$

for $r \geqq 1$.
Inequality is reversed if $0<r<1$, and equality holds if either $b=0$ or $r=1$.
Theorem B. Let $Q_{1}, Q_{2}, \ldots, Q_{m}$ be non-negative numbers, $r>0$ and

$$
Q \geqq \max \left(Q_{1}, Q_{2}, \ldots, Q_{m}\right)
$$

(i) If $s Q=\sum_{i=1}^{m} Q_{i}$, for some real s, then

$$
\begin{equation*}
s Q^{r} \geqq \sum_{i=1}^{m} Q_{i}^{r} \quad(r \geqq 1), \quad s Q^{r} \leqq \sum_{i=1}^{m} Q_{i}^{r} \quad(0<r<1) \tag{2}
\end{equation*}
$$

Equality holds if one of the following holds:
(a) $r=1$,
(b) $Q_{i}=0$ for $1 \leqq i \leqq m$,
(c) s is an integer $(1 \leqq s \leqq m)$ such that $Q_{i}=Q$ for $1 \leqq i \leqq s$ and $Q_{i}=0$ when $i>s$.
(ii) If $s Q+Q_{0}=\sum_{i=1}^{m} Q_{i}$ for some real s, Q_{0} where $0<Q_{0}<Q$, and either $s=0$ or if $s \neq 0, s Q \geqq Q_{i}$ for $1 \leqq i \leqq m$, then

$$
\begin{equation*}
s Q^{r}+Q_{0}^{r} \geqq \sum_{i=1}^{m} Q_{i}^{r} \quad(r \geqq 1) \tag{3}
\end{equation*}
$$

* Presented November 13, 1973 by P. M. Vasić.

Equality holds if one of the following occurs:
(a) $r=1$,
(b) $s=0, Q_{0}=Q_{i}$ for some i and $Q_{j}=0$ for $j \neq i$,
(c) s is an integer such that there are $s Q_{i}$'s equal to Q, one $Q_{i}=Q_{0}$ and the rest of Q_{i} 's equal to zero.

As it was noticed by H. T. Croft [3] the conclusion (ii) of theorem B (i.e. inequality (3)) is not correct for arbitrary real number s. Counter example from [3] is

$$
Q=Q_{1}=Q_{2}=1, \quad Q_{0}=0,5, \quad s=1,5, \quad m=r=2 .
$$

On the other hand theorems A and B are immediate consequences of some, well known elementary properties of convex functions, as it will be shown in a much simpler way than in the paper [2].
2. Namely we will prove the following two theorems:

Theorem 1. Let a and b be nonnegative real numbers and let $a+b \leqq c$. Then for every convex functions $x \mapsto f(x)$ defined for all $x \geqq 0$ the following inequality holds

$$
\begin{equation*}
f(a)+f(b+c) \geqq f(a+b)+f(c) \tag{4}
\end{equation*}
$$

If the function f is concave the above inequality is reversed.
In the case when $f(t)=t^{r}$ where $t \geqq 0$ and where $r \geqq 1$ or $0<r<1$ Thcorem 1 reduces to the Theorem A.

Proof. From the assumption of our theorem it follows that $a \leqq b \leqq c$ or $b \leqq a \leqq c$. If we introduce the notations $x_{1}=b+c, x_{2}=a, y_{1}=c, y_{2}=a+b$ then we have $x_{1} \geqq x_{2}, y_{1} \geqq y_{2}, x_{1}+x_{2}=y_{1}+y_{2}$, i.e. the vector y is majorized by the vector x, where $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right)$ (which is, as usual denoted by $x>y$, see [1] page 162). Therefrom and from well known theorem of Hardy-Lit-tlewood-Pólya (see [1] page 164 theorem 1) it follows that for every convex function f the following inequality holds

$$
f\left(x_{1}\right)+f\left(x_{2}\right) \geqq f\left(y_{1}\right)+f\left(y_{2}\right)
$$

in virtue of what the theorem is proved.
Theorem 2. Let us suppose that the numbers $Q_{1}, \ldots, Q_{m}(m \in N)$ are nonnegative and that $Q \geqq \max \left(Q_{1}, \ldots, Q_{m}\right)$. If the real number s is such that $s Q=\sum_{i=1}^{m} Q_{i}$ then the following inequality holds

$$
\begin{equation*}
s f(Q) \geqq \sum_{i=1}^{m} f\left(Q_{i}\right) \tag{5}
\end{equation*}
$$

for every convex function $x \mapsto f(x)$, defined for all $x \geqq 0$, for which we have $f(0)=0$.
Proof. If $Q=0$, then $Q_{i}=0(i=1, \ldots, m)$ so that (5) is reduced to equality, in virtue of $f(0)=0$. Further we can suppose that $Q>0$. Then as for
every convex function the inequality $f(a x) \leqq a f(x)$ holds for every $x \geqq 0$ and $0 \leqq a \leqq 1$ we have

$$
\begin{equation*}
f\left(Q_{i}\right)=f\left(\frac{Q_{i}}{Q} Q\right) \leqq \frac{Q_{i}}{Q} f(Q) \quad(i=1, \ldots, m) \tag{6}
\end{equation*}
$$

in virtue of $0 \leqq \frac{Q_{i}}{Q} \leqq 1(i=1, \ldots, m)$. Therefrom adding inequalities (6) from $i=1$ to $i=m$ we get

$$
\begin{equation*}
\sum_{i=1}^{m} f\left(Q_{i}\right) \leqq \frac{f(Q)}{Q} \sum_{i=1}^{m} Q_{i}=s f(Q) \tag{7}
\end{equation*}
$$

which proves the theorem.
Theorem 2.1. Let us suppose that the numbers $Q_{1}, \ldots, Q_{m}(m \in N)$ are nonnegative and let $Q \geqq \max \left(Q_{1}, \ldots, Q_{m}\right)$. If n is natural number such that

$$
n Q+Q_{0}=\sum_{i=1}^{m} Q_{i}
$$

where $0<Q_{0}<Q$, then the following inequality

$$
\begin{equation*}
n f(Q)+f\left(Q_{0}\right) \geqq \sum_{i=1}^{m} f\left(Q_{i}\right) \tag{8}
\end{equation*}
$$

is valid, for every convex function $x \mapsto f(x)$, defined for all $x \geqq 0$ and for which we have $f(0)=0$.

Proof. In (8) the equality is valid if
(a) $Q=0\left(\right.$ then $\left.Q_{0}=Q_{i}=0 \quad(i=1, \ldots, m)\right)$,
(b) $n=0, Q_{0}=Q_{i_{0}}$ and $Q_{j}=0$ for $j \neq i_{0}$.

If we suppose that $Q>0$ then we have

$$
n Q<n Q+Q_{0}=\sum_{i=1}^{m} Q_{i} \leqq m Q
$$

wherefrom it follows that $n<m$.
Let us introduce the following notations
or

$$
x_{i}=Q(i=1, \ldots, n) \text { and } x_{n+1}=Q_{0} \text { if } m=n+1
$$

$x_{i}=Q(i=1, \ldots, n), x_{n+1}=Q_{0}, x_{i}=0 \quad(i=n+2, \ldots, m)$
if $m \geqq n+2$, and $y_{i}=Q_{i}(i=1, \ldots, m)$. Besides, we can suppose that $Q_{i} \geqq Q_{i+1}$ without loss of generality. So, we have

$$
\begin{gathered}
x_{1} \geqq x_{2} \geqq \cdots \geqq x_{m} \quad \text { and } \quad y_{1} \geqq y_{2} \geqq \cdots \geqq y_{m}, \\
\sum_{i=1}^{k} x_{i} \geqq \sum_{i=1}^{k} y_{i} \quad(k=1, \ldots, m-1), \quad \sum_{i=1}^{m} x_{i}=\sum_{i=1}^{m} y_{i},
\end{gathered}
$$

i.e. $x>y$ where $x=\left(x_{1}, \ldots, x_{m}\right), y=\left(y_{1}, \ldots, y_{m}\right)$. In virtue of the cited theorem of Hardy-Littlewood-Pólya we can conclude that

$$
\sum_{i=1}^{m} f\left(x_{i}\right) \geqq \sum_{i=1}^{m} f\left(y_{i}\right) .
$$

Since we have

$$
\sum_{i=1}^{m} f\left(x_{i}\right)=n f(Q)+f\left(Q_{0}\right), \quad \sum_{i=1}^{m} f\left(y_{i}\right)=\sum_{i=1}^{m} f\left(Q_{i}\right)
$$

the validity of inequality (8) follows.
Remark. In this paper we have taken convex functions to mean continuous and Jensen convex functions, as defined in [1].

We express our deep gratitude to Professors D. S. Mitrinović and P. M. Vasic for help they have given us during the preparation of this paper.

REFERENCES

1. D. S. Mitrinović: Analytic Inequalities. Berlin-Heidelberg-New York 1970.
2. V. K. Lim: A note on an inequality. Nanta Math. № 1, 5 (1971), 38-40.
3. H. T. Croft: Review 7001. Math. Reviews 45 (1973).
