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451. ENUMERATION OF A SPECIAL CLASS OF
PERMUTATIONS BY RISES*

- Leonard Carlitz**

1. It is well known (see for example [3, pp 105—112]) that if 4 (n) denotes
the number of up-down permutations of Z,={1, 2, ..., n}, then (4(0)=A4(1)=1)

(1.1 ZA(n)ff=secx+tanx.
P n!

The writer has refined this result in the following way. Let A4 (n, r) denote
the number of up-down permutations of Z, with r rises on the top line:

a b

A, r): N\/\/\

A rise is a pair of consecutive elements g, b with a<b; also we agree to count
a conventional rise on the left. For example

132546, 426153

have 3 and 2 rises, respectively. It has been proved [1] that

i z2n+1 U’(Z)
. A2 1 r—=_-_227
(12) n§0(2n+1)!§,: (n+ > 1) U(z)
and
. S S 40 S PV
(1.3) nZo(Z”)!Z Q2n, I’)J‘C 1 x+U(z)
where

A(09r)=80,r’ A(lar)=80.r-—1
and

o 2n n—1

A4 =5 (=12 1+2k(1—x)).
(1.4) U@= 3 (~1y g =TT (1+2k(1—3)
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190 L. Carlitz

One can generalize up-down permutations in the following way. Let k, ¢
be fixed integers, k=2, t=0 and consider permutations of Z,,,, of the type

(1.5)

For brevity we may call permutations of this kind (k, t)-permutations.

Let A, ,(kn+1t) denote the number of (k, t)-permutations of Z,,,. The
writer has proved [2] that

oo

1.6
(1.6) Z (k ) <I’k o(Z)
and

s kn+¢ i) (z)

1. k z =_kt'2) 1>0),
(1.7) Z, Ay, (kn+ )(knﬂ)' B, .0 (t>0)
where
(1.8) 0, ()= z (—1y (120).

(k n+t)!

In the present paper we consider the refined problem of enumerating
(k, t)-permutations of Z,,,, with a given number of rises on the top line
(see (1.5)). Let A, ,(kn+1, r) denote the number of (k, f)-permutations with r
rises on the top line. Explicit formulas for the generating functions

Zkn+t

(kn+1)!

Fk,(z)—zZAk,(kn+tr)x' (t=0,1,2,...)

n=0 r
are obtained in Theorems 1 and 2 below.

2. Let k, t be fixed integers, k=2 and 0=<t<k. Let 4,  (kn+t,r) denote
the number of (k, f)-permutations (1.5) with r rises on the top line. A con-
ventional rise on the left is counted. For example, with k=3, t=1, the
(3, 1)-permutations

have 2 and 1 rises, respectively. It is convenient to take

@.1) A (or)=8,,  (0=jst<k).
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To begin with we set up a recurrence for A, ,(nk+t). Let = denote a
typical (k, r)-permutation of Z,,,, and consider the effect of removing the
element kn+t. We take first the case 7=0:

If the element kn is in the position marked with an asterisk, it is clear
that = becomes a (k, k—1)-permutation of Z,, , and that the number of rises

X E 3

has been decreased by 1. On the other hand, if kn is in any other position, =
breaks into a (k, k—1)- and a (k, 0)-permutation. Moreover, because of the
conventional rises, there is no loss in the number of rises. We accordingly get
the recurrence

22 Ao hnr)= Z (kn_l) :

kj—1 z Ak, k—1 (ki—1, S)Ak,o (k (n—j, r—s)

5=0
+ A i kn—1, r—1)—4; ,_ (kn—1, r).

For t=1, it is clear that = always breaks into a (k,k—1)- and a
(k, 1)-permutation. There will be a loss of a rise only if kn+ 1 is in the position
marked with an asterisk. Thus we get

r k 4 R .
23) A, kil r)=3 (kjnl) > Ak ks =1, 9) 4, (K (n—)) + 1, r—s)
= \—=1/ 7%

+knl[A; o (kn—1, r—1)—A4; ,_ (kn—1, r)].
The coefficient kn is the number of ways of filling the extreme right hand position.
For 1<t<k,
*
%k

there are two exceptional positions for kn+t. In the first of the marked positions
there is a loss of a rise. The resulting recurrence is

2 (ki -1\ & . .
(24) A (kntt r)= ng( ';:_tl )goAk,k—l (ki—1, 8) 4y, (k (n—)) + ¢, r—s)
kn+t—1
+( ; ) [k (kn—1, r—1)—A4; ,_, (kn—1,1)]

t Ay, kntt—1,1)  (I<t<k).
3. Put

(3.1) A (kntt, x)=D A, (kn+t, r)xr.
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Then (2.2), (2.3), (2.4) imply the following relations

) 2': I‘Ik,k_x (kj—1, x) ‘Zk’,o (k (n—j), x)

5s=0

~ o fkn—1
3. k =
() Ayl = 3 (07,

—(1—x) Ay ., (kn—1, x),

kn
kj—

(33) A, (kn+1,x)= z( )zAkk L (Ki—1, x) A, (k(r—j)+ 1, %)

—kn(1—x) 4, ., (kn—1, x) n=1),

= 5o fknt—1\ &z . ~ .
B4 A, (kn+t, x)=z(nk;r_t1 )Z k1 ki—1, ) 4,.,, (k (n—)) +1—1, x)

i=1 5=0

1
—("”“ )(l—x)Akk Jkn—1, %)+ A, ,_ kn+t—1,%)  l<t<k).

Next let
3.5 F ()= 2 A, (kn+t, x)

zkn+t

(kn+1)!

(t=0).
For t=0, it follows from (3.2) that

kj—x *
Fe,0(2)= z Ay gy (Kj—1, x ) 1)' k,o(k”’

~ zkn—1
—(1—x) ,gn Ay, 1y (kn—1, x) (k_n:T); .

Hence we get

(3.6) Fi,0(2) = Fi 4y (2) Frp (2)—(1—%) Fy, i, (2).
For t=1, it follows similarly from (3.3) that

3.7 Fio1 (@)= Fri_y @) Fio,y @)—(1—X) 2Fy 1y () + 1.

The 1 on the extreme right corresponds to the term A4, , (1, x) on the left.
For 1<t<k, if follows from (3.4) that

(3.8)  Fioi(@=F i, Fi, (2)— (1——x) Fk - 1(Z)+Fk t-1(2) (1<t <k).

4. We now consider the system of differential equations (3.6), (3.7), (3.8). It is
convenient to transform the system by taking

@“.n Fy(2)=

q)k 0 (Z)

4.2 F. . (z —_kt\®) t=1).
( ) A,t() q)k’o(Z) ( )
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Then (3.6), (3.7), (3.8) becomes

(4.3) (D;C,O(z) =—0 , @+(1—x)D,_, 2D, (),
(4.4) D1 (D) =Dy @)+ (1=2) Dy o, (2) Dy, @) —(1—X) 2D, (2),
(4.5) D, (2) = @y (2) + (1= 2) Dy 4, Dy, (2)

—(1-0 50, @ (<i<h),

respectively.
Put
4.6) DP()=1—(1-—x) P, ,(2).
Then, by (4.3),
4.7) D' (2)=(1—x) ©(2) Oy, (2),

so that, if y is an arbitrary function of z,

y
(525) ~ai50' 099 ).

Thus (4.3), (4.4), (4.5) become

(4.8) (M) O @

' @ (2) O
(4.9) <(I)k,1(z))’ _ (Dk’O(Z)——(I—X)Zq)k'k_I (z)’

(2) D(2) ®©(2)

@19 (q}k,t(Z)),:(Dk’M(Z) *(l“x)z—t Proie=1 ) (1<t <k).

. ®(2) @ (2) 1 D)

If we put

4.11) Y, () =Y, ()= Dy, :(2) (=0),

@ (2)

the equations (4.8), (4.9), (4.10) take on the simpler form

(4.12) V(@) =—V,_,(2),
(4.13) ¥ ()=, @) —(1—x) 2, ()
(4.14) ¥i(z)="Y,_ (2)— (1—-x) qfk () (1<t <k).

Now it is clear from (4.1), (4.2) and (4.11) that
+¢

(4.15) V()= Z a,(n )

n=0 +0)1
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194 L. Carlitz

where g, (n)=a, (n, x). Then, by (4.12), (4.13) and (4.14), we get
4.16) a,(kn) =-—a;_,(kn—1),
4.17)  a,(kn+1)=a,(kn)—kn(1—x)a;_, (kn—1),

@18) akntn) =g (ni =)~ T (D@, ) (<i<h).

Combining (4.16) and (4.17) we get
(4.19) a, (kn+ 1) = —(1 +kn(1—x)) a,_, (kn—1).
In (4.18) take f—2:
a, (kn+2) =a, (kn+ 1)— (""“) (1—x)a,_, (kn—1)

:——[1+kn(1—x)+(kn+1) (l—x)]ak (kn—1).
Next for r=3:
ay (kn +3) = a, Gn + (%) (1—x) @y (kn—1)

=_[1 +kn(l—x)+<k"+1> (1— )+("”+2) (1—x)] a_, (kn—T1).

The general formula is evidently
(4.20) a,(kn+1ty=—[1+0o,(n) 1—x)]a,_, (kn—1) (1<t<k)
where
t .
5, () = Z (kn+']-1)'
j=1 J

In view of (4.19), this result holds for =1 also.
In particular, for t=-k—1, (4.20) becomes

ay_, (kn+k—1)=—[1+0,_, (n) (1—x)]a,_, (kn—1).

Hence '
a_ (kn+k—1)=(—1y I‘nI [+ 64_ () (1 —x)] @y (k—1).
Since =0 .
Ay (—1, =1 ®O)=x, a_, (k_l)zi,
we have ’

.21 a_, kntk—1) == ” H [+ 0, () 1—x)].



Enumeration of a special class of permutations by rises 195

Hence, by (4.16) and (4.20)

n—1

(422 g (o) =TT L+ 0, () (A=),

j=0

4.23)  a,kntt)=""2" (12 6,m) 1—x) ff Hto, ()A—x] (1=t<k).
j=0

X

Also, by (4.2) and (4.11),
¥ (2)

4.24 = t=
(4.24) Fa@=y' D Gz,
while, by (4.1) and (4.6),

‘}Pl
(4.25) F (2= 1—x+lFO @

To sum up, we state

Theorem 1. Let k=2, 0<t<k. Then the generating functions F, ,(z) satisfy

(4.26)  F,(2)=1—x+ — ,
J n- zkn
1 —1)n 1+o4_, () A—%)] ——
+n§1( )11:[0[+ck D =21 -

2t o0 n—1 Zkn+t

7 2 e (=] [T H+oi, () =0 ey

(4.27)  F, () ——==" : = :
o n—1 . zkn
1+,,§1(_1) 1130[1+ck~1(1)(1—x)1(kn)!

O<t<k).

5. The restriction ¢ <<k in Theorem 1 can be removed. In defining A, ,(kn+ 1)
for t=k, we remark first that, when f=k, a possible rise may occur preceeding
the extreme right hand element; however for >k, such a rise is never counted.
Clearly

(5.1) Ay (kn+ky=A, , (kn+k).

We define A, ,(kn+t, x) and F,,(z) by means of (3.1) and (3.5) for
all 1=0. Thus by (5.1) we have

(5.2) Fp o (2)=—14F,o(2).

In the next place, for ¢>k, the recurrence (2.4) is valid. Then (3.4) is
also valid and this in turn implies the truth of (3.8) and therefore of (4.10)
and (4.14). Consequently (4.20) is also valid for ¢ >k. It then follows that (4.27)
holds for ¢>k. Moreover, it follows from (5.2) that (4.27) holds also for ¢=k.

We may accordingly state

13*



196 L. Carlitz

Theorem 2. Let k=2, t=0. Then the generating functions F, ,(z) satisfy (4.26)
and (4.27).

For k=2, it is easily verified that (4.26) and (4.27) are in agreement
with the results of [1]. For k=3 we have
X

1 i T [0l Y "
t2 D ,H[ " ( 2 )( _X)]'(sn)!

0

(5.3) Foo(@)=1—x+

3

ST R H[l o "N zt
P 3 s [ ( ; )( ”")]'(snﬂ)!
(5.9 F,,(2)=

o n—1 :
u j+1 zn
1+Zl(—1) JQ)[lw( i )(1—x)]-(3n)!

22 & " F+1 1 32
?!+n§1(—1) 11]1[“—9( 2 )(I_X)J'(3n+2)!
(5.9 F,,(2)= )

< nl j+1 z3n
I+ 2,0 ,H[”g( 2 >(I_X)J'(3n>!

i=0

Thus
(5.6) FM(Z):1+x;~j+(10x+9x2)2—:+ e

The ten permutations with =1 are:
126345, 136245, 146235, 156234, 236145, 246135, 256134, 346125, 356124, 456123.

The nine permutations with r=2 are:
124356, 125346, 134256, 135246, 145236, 234156, 235146, 245136, 345136.

(5.7) FM(z)=z+3xz—:+(4zx+54x2);—:+ e
(5.8) FM(z)=§+9x§+(234x+243x2)§+ o

We shall not take the space to list the permutations corresponding to the
terms in z7 and z® in (5.7) and (5.8). The coefficient 9x in (5.8) corresponds
to the permutations

12435, 12534, 13425, 13524, 14523, 23415, 23514, 24513, 34512.
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