451.

ENUMERATION OF A SPECIAL CLASS OF PERMUTATIONS BY RISES*

Leonard Carlitz**

1. It is well known (see for example [3, pp 105-112]) that if $A(n)$ denotes the number of up-down permutations of $Z_{n}=\{1,2, \ldots, n\}$, then $(A(0)=A(1)=1)$

$$
\begin{equation*}
\sum_{n=0}^{\infty} A(n) \frac{x^{n}}{n!}=\sec x+\tan x . \tag{1.1}
\end{equation*}
$$

The writer has refined this result in the following way. Let $A(n, r)$ denote the number of up-down permutations of Z_{n} with r rises on the top line:

A rise is a pair of consecutive elements a, b with $a<b$; also we agree to count a conventional rise on the left. For example

132546, 426153
have 3 and 2 rises, respectively. It has been proved [1] that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{z^{2 n+1}}{(2 n+1)!} \sum_{r} A(2 n+1, r) x^{r}=\frac{U^{\prime}(z)}{U(z)} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{z^{2 n}}{(2 n)!} \sum_{r} A(2 n, r) x^{r}=1-x+\frac{x}{U(z)}, \tag{1.3}
\end{equation*}
$$

where

$$
A(0, r)=\delta_{0, r}, \quad A(1, r)=\delta_{0, r-1}
$$

and

$$
\begin{equation*}
U(z)=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!} \prod_{k=0}^{n-1}(1+2 k(1-x)) . \tag{1.4}
\end{equation*}
$$

[^0]One can generalize up-down permutations in the following way. Let k, t be fixed integers, $k \geqq 2, t \geqq 0$ and consider permutations of $Z_{k n+t}$ of the type

For brevity we may call permutations of this kind (k, t)-permutations.
Let $A_{k, t}(k n+t)$ denote the number of (k, t)-permutations of $Z_{k n+t}$. The writer has proved [2] that

$$
\begin{equation*}
\sum_{n=0}^{\infty} A_{k, 0}(k n) \frac{z^{k n}}{(k n)!}=\frac{1}{\Phi_{k, 0}(z)} \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} A_{k, t}(k n+t) \frac{z^{k n+t}}{(k n+t)!}=\frac{\Phi_{k, t}(z)}{\Phi_{z, 6}(z)} \quad(t>0), \tag{1.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi_{k, t}(z)=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{k n+t}}{(k n+t)!} \quad(t \geqq 0) \tag{1.8}
\end{equation*}
$$

In the present paper we consider the refined problem of enumerating (k, t)-permutations of $Z_{k n+t}$ with a given number of rises on the top line (see (1.5)). Let $A_{k, t}(k n+t, r)$ denote the number of (k, t)-permutations with r rises on the top line. Explicit formulas for the generating functions

$$
F_{k, t}(z)=\sum_{n=0}^{\infty} \sum_{r} A_{k, t}(k n+t, r) x^{r} \frac{z^{k n+t}}{(k n+t)!} \quad(t=0,1,2, \ldots)
$$

are obtained in Theorems 1 and 2 below.
2. Let k, t be fixed integers, $k \geqq 2$ and $0 \leqq t<k$. Let $A_{h, t}(k n+t, r)$ denote the number of (k, t)-permutations (1.5) with r rises on the top line. A conventional rise on the left is counted. For example, with $k=3, t=1$, the (3, 1)-permutations

have 2 and 1 rises, respectively. It is convenient to take

$$
\begin{equation*}
A_{k, t}(j, r)=\delta_{r, 0} \quad(0 \leqq j \leqq t<k) . \tag{2.1}
\end{equation*}
$$

To begin with we set up a recurrence for $A_{k, t}(n k+t)$. Let π denote a typical (k, t)-permutation of $Z_{k n+t}$ and consider the effect of removing the element $k n+t$. We take first the case $t=0$:

If the element $k n$ is in the position marked with an asterisk, it is clear that π becomes a ($k, k-1$)-permutation of $Z_{k n-1}$ and that the number of rises

has been decreased by 1 . On the other hand, if $k n$ is in any other position, π breaks into a $(k, k-1)$ - and a ($k, 0$)-permutation. Moreover, because of the conventional rises, there is no loss in the number of rises. We accordingly get the recurrence

$$
\begin{align*}
A_{k, 0}(k n, r)= & \sum_{j=1}^{n}\binom{k n-1}{k j-1} \sum_{s=0}^{r} A_{k, k-1}(k j-1, s) A_{k, 0}(k(n-j), r-s) \tag{2.2}\\
& +A_{k, k-1}(k n-1, r-1)-A_{k, k-1}(k n-1, r)
\end{align*}
$$

For $t=1$, it is clear that π always breaks into a $(k, k-1)$ - and a ($k, 1$)-permutation. There will be a loss of a rise only if $k n+1$ is in the position marked with an asterisk. Thus we get

$$
\begin{align*}
A_{k, 1}(k n+1, r)= & \sum_{j=1}^{n}\binom{k n}{k j-1} \sum_{s=0}^{r} A_{k, k-1}(k j-1, s) A_{k, 1}(k(n-j)+1, r-s) \tag{2.3}\\
& +k n\left[A_{k, k-1}(k n-1, r-1)-A_{k, k-1}(k n-1, r)\right] .
\end{align*}
$$

The coefficient $k n$ is the number of ways of filling the extreme right hand position.
For $1<t<k$,

there are two exceptional positions tor $k n+t$. In the first of the marked positions there is a loss of a rise. The resulting recurrence is

$$
\begin{align*}
A_{k, t}(k n+t, r)= & \sum_{j=1}^{n}\binom{k n+t-1}{k j-1} \sum_{s=0}^{r} A_{k, k-1}(k j-1, s) A_{k, t}(k(n-j)+t, r-s) \tag{2.4}\\
& +\binom{k n+t-1}{t}\left[A_{k, k-1}(k n-1, r-1)-A_{k, k-1}(k n-1, r)\right] \\
& +A_{k, t-1}(k n+t-1, r) \quad(1<t<k) .
\end{align*}
$$

3. Put

$$
\begin{equation*}
\tilde{A}_{k, t}(k n+t, x)=\sum A_{k, t}(k n+t, r) x^{r} \tag{3.1}
\end{equation*}
$$

Then (2.2), (2.3), (2.4) imply the following relations

$$
\begin{align*}
& \tilde{A}_{k, 1}(k n+1, x)= \sum_{j=1}^{n}\binom{k n}{k j-1} \sum_{s=0}^{r} \tilde{A}_{k, k-1}(k j-1, x) \tilde{A}_{k, 1}(k(n-j)+1, x) \tag{3.3}\\
&-k n(1-x) \tilde{A}_{k, k-1}(k n-1, x) \quad(n \geqq 1), \\
& \tilde{A}_{k, t}(k n+t, x)= \sum_{j=1}^{n}\binom{k n+t-1}{k j-1} \sum_{s=0}^{r} \tilde{A}_{k, k-1}(k j-1, x) \tilde{A_{k, t}}(k(n-j)+t-1, x) \tag{3.4}\\
&\left.-\binom{k n+t-1}{t}(1-x) \tilde{A}_{k, k-1}(k n-1, x)+\tilde{A}_{k, t-1}(k n+t-1, x) \quad 1<t<k\right) .
\end{align*}
$$

Next let

$$
\begin{equation*}
F_{k, t}(z)=\sum_{n=0}^{\infty} \tilde{A}_{k, t}(k n+t, x) \frac{z^{k n+t}}{(k n+t)!} \quad(t \geqq 0) \tag{3.5}
\end{equation*}
$$

For $t=0$, it follows from (3.2) that

$$
\begin{aligned}
F_{k, 0}^{\prime}(z)= & \sum_{j=1}^{\infty} \tilde{A}_{k, k-1}(k j-1, x) \frac{z^{k j-1}}{(k j-1)!} \sum_{n=0}^{\infty} \tilde{A}_{k, 0}(k n, x) \frac{z^{k n}}{(k n)!} \\
& -(1-x) \sum_{n=1}^{\infty} \tilde{A}_{k, k-1}(k n-1, x) \frac{z^{k n-1}}{(k n-1)!} .
\end{aligned}
$$

Hence we get

$$
\begin{equation*}
F_{k, 0}^{\prime}(z)=F_{k, k-1}(z) F_{k, 0}(z)-(1-x) F_{k, k-1}(z) . \tag{3.6}
\end{equation*}
$$

For $t=1$, it follows similarly from (3.3) that

$$
\begin{equation*}
F_{k, 1}^{\prime}(z)=F_{k, k-1}(z) F_{k, 1}(z)-(1-x) z F_{k, k-1}(z)+1 \tag{3.7}
\end{equation*}
$$

The 1 on the extreme right corresponds to the term $A_{k, 1}(1, x)$ on the left.
For $1<t<k$, if follows from (3.4) that

$$
\begin{equation*}
F_{k, t}^{\prime}(z)=F_{k, k-1}(z) F_{k, t}(z)-(1-x) \frac{z^{t}}{t!} F_{k, k-1}(z)+F_{k, t-1}(z) \quad(1<t<k) \tag{3.8}
\end{equation*}
$$

4. We now consider the system of differential equations (3.6), (3.7), (3.8). It is convenient to transform the system by taking

$$
\begin{align*}
& F_{k, 0}(z)=\frac{1}{\Phi_{k, 0}(z)}, \tag{4.1}\\
& F_{k, t}(z)=\frac{\Phi_{k, t}(z)}{\Phi_{k, 0}(z)} \quad(t \geqq 1) . \tag{4.2}
\end{align*}
$$

Then (3.6), (3.7), (3.8) becomes

$$
\begin{align*}
& \Phi_{k, 0}^{\prime}(z)=-\Phi_{k, k-1}(z)+(1-x) \Phi_{k, k-1}(z) \Phi_{k, 0}(z) \tag{4.3}\\
& \Phi_{k, 1}^{\prime}(z)= \Phi_{k, 0}(z)+(1-x) \Phi_{k, k-1}(z) \Phi_{k, 1}(z)-(1-x) z \Phi_{k, k-1}(z), \\
& \Phi_{k, t}^{\prime}(z)=\Phi_{k, t-1}(z)+(1-x) \Phi_{k, k-1} \Phi_{k, t}(z) \\
& \quad-(1-x) \frac{z^{t}}{t!} \Phi_{k, k-1}(z) \quad(1<t<k),
\end{align*}
$$

respectively.
Put

$$
\Phi(z)=1-(1-x) \Phi_{k, 0}(z) .
$$

Then, by (4.3),

$$
\begin{equation*}
\Phi^{\prime}(z)=(1-x) \Phi(z) \Phi_{k, k-1}(z) \tag{4.7}
\end{equation*}
$$

so that, if y is an arbitrary function of z,

$$
\left(\frac{y}{\Phi(z)}\right)^{\prime}=\frac{1}{\Phi(z)}\left(y^{\prime}-(1-x) \Phi_{k, k-1}(z) y\right) .
$$

Thus (4.3), (4.4), (4.5) become
(4.8) $\quad\left(\frac{\Phi_{k, 0}(z)}{\Phi(z)}\right)^{\prime}=-\frac{\Phi_{k, k-1}(z)}{\Phi(z)}$,
(4.9) $\quad\left(\frac{\Phi_{k, 1}(z)}{\Phi(z)}\right)^{\prime}=\frac{\Phi_{k, 0}(z)}{\Phi(z)}-(1-x) z \frac{\Phi_{k, k-1}(z)}{\Phi(z)}$,

$$
\begin{equation*}
\left(\frac{\Phi_{k, i}(z)}{\Phi(z)}\right)^{\prime}=\frac{\Phi_{k, t-1}(z)}{\Phi(z)}-(1-x) \frac{z^{t}}{t!} \frac{\Phi_{k, k-1}(z)}{\Phi(z)} \quad(1<t<k) . \tag{4.10}
\end{equation*}
$$

If we put

$$
\begin{equation*}
\Psi_{t}(z)=\Psi_{k, t}(z)=\frac{\Phi_{k, t}(z)}{\Phi(z)} \quad(t \geqq 0) \tag{4.11}
\end{equation*}
$$

the equations (4.8), (4.9), (4.10) take on the simpler form

$$
\begin{equation*}
\Psi_{0}^{\prime \prime}(z)=-\Psi_{k-1}(z), \tag{4.12}
\end{equation*}
$$

$$
\begin{align*}
& \Psi_{1}^{\prime}(z)=\Psi_{0}(z)-(1-x) z \Psi_{k-1}(z) \tag{4.13}\\
& \Psi_{t}^{\prime}(z)=\Psi_{t-1}(z)-(1-x) \frac{z^{t}}{t!} \Psi_{k-1}(z) \quad(1<t<k) \tag{4.14}
\end{align*}
$$

Now it is clear from (4.1), (4.2) and (4.11) that

$$
\begin{equation*}
\Psi_{t}(z)=\sum_{n=0}^{\infty} a_{t}(n) \frac{z^{k n+t}}{(k n+t)!}, \tag{4.15}
\end{equation*}
$$

where $a_{t}(n)=a_{t}(n, x)$. Then, by (4.12), (4.13) and (4.14), we get
(4.16) $a_{0}(k n)=-a_{k-1}(k n-1)$,
(4.17) $\quad a_{1}(k n+1)=a_{0}(k n)-k n(1-x) a_{k-1}(k n-1)$,
(4.18) $\quad a_{t}(k n+t)=a_{t-1}(k n+t-1)-\binom{k n+t-1}{t}(1-x) a_{k-1}(k n-1) \quad(1<t<k)$.

Combining (4.16) and (4.17) we get

$$
\begin{equation*}
a_{1}(k n+1)=-(1+k n(1-x)) a_{k-1}(k n-1) \tag{4.19}
\end{equation*}
$$

In (4.18) take $t=2$:

$$
\begin{aligned}
a_{2}(k n+2) & =a_{1}(k n+1)-\binom{k n+1}{2}(1-x) a_{k-1}(k n-1) \\
& =-\left[1+k n(1-x)+\binom{k n+1}{2}(1-x)\right] a_{k-1}(k n-1) .
\end{aligned}
$$

Next for $t=3$:

$$
\begin{aligned}
a_{3}(k n+3) & =a_{2}(k n+2)-\binom{k n+2}{2}(1-x) a_{k-1}(k n-1) \\
& =-\left[1+k n(1-x)+\binom{k n+1}{2}(1-x)+\binom{k n+2}{3}(1-x)\right] a_{k-1}(k n-1) .
\end{aligned}
$$

The general formula is evidently

$$
\begin{equation*}
a_{t}(k n+t)=-\left[1+\sigma_{t}(n)(1-x)\right] a_{k-1}(k n-1) \quad(1<t<k) \tag{4.20}
\end{equation*}
$$

where

$$
\sigma_{t}(n)=\sum_{j=1}^{t}\binom{k n+j-1}{j}
$$

In view of (4.19), this result holds for $t=1$ also.
In particular, for $t=k-1$, (4.20) becomes

$$
a_{k-1}(k n+k-1)=-\left[1+\sigma_{k-1}(n)(1-x)\right] a_{k-1}(k n-1)
$$

Hence

$$
a_{k-1}(k n+k-1)=(-1)^{n} \prod_{j=0}^{n}\left[1+\sigma_{k-1}(j)(1-x)\right] a_{k-1}(k-1)
$$

Since

$$
\tilde{A}_{k-t, t}(k-1, x)=1, \quad \Phi(0)=x, \quad a_{k-1}(k-1)=\frac{1}{x}
$$

we have

$$
\begin{equation*}
a_{k-1}(k n+k-1)=\frac{(-1)^{n}}{x} \prod_{j=0}^{n}\left[1+\sigma_{k-1}(j)(1-x)\right] . \tag{4.21}
\end{equation*}
$$

Hence, by (4.16) and (4.20)

$$
\begin{align*}
& a_{0}(k n)=\frac{(-1)^{n}}{x} \prod_{j=0}^{n-1}\left[1+\sigma_{k-1}(j)(1-x)\right] \tag{4.22}\\
& a_{t}(k n+t)=\frac{(-1)^{n}}{x}\left[1+\sigma_{t}(n)(1-x)\right] \prod_{j=0}^{n-1}\left[1+\sigma_{k-1}(j)(1-x)\right] \quad(1 \leqq t<k) \tag{4.23}
\end{align*}
$$

Also, by (4.2) and (4.11),

$$
\begin{equation*}
F_{k, t}(z)=\frac{\Psi_{t}(z)}{\Psi_{0}(z)} \quad(t \geqq 1) \tag{4.24}
\end{equation*}
$$

while, by (4.1) and (4.6),

$$
\begin{equation*}
F_{k, 0}(z)=1-x+\frac{\Psi_{1}}{\Psi_{0}(z)} \tag{4.25}
\end{equation*}
$$

To sum up, we state
Theorem 1. Let $k \geqq 2,0 \leqq t<k$. Then the generating functions $F_{k, t}(z)$ satisfy

$$
\begin{align*}
& F_{k, 0}(z)=1-x+\frac{x}{1+\sum_{n=1}^{\infty}(-1)^{n} \prod_{j=0}^{n-1}\left[1+\sigma_{k-1}(j)(1-x)\right] \frac{z^{k n}}{(k n)!}}, \tag{4.26}\\
& F_{k, t}(z)=\frac{\frac{z^{t}}{t!}+\sum_{n=1}^{\infty}(-1)^{n}\left[1+\sigma_{t}(n)(1-x)\right] \prod_{j=1}^{n-1}\left[1+\sigma_{k-1}(j)(1-x)\right] \frac{z^{k n+t}}{(k n+t)!}}{1+\sum_{n=1}^{\infty}(-1)^{n} \prod_{j=0}^{n-1}\left[1+\sigma_{k-1}(j)(1-x)\right] \frac{z^{k n}}{(k n)!}} \\
& \quad(0<t<k) .
\end{align*}
$$

5. The restriction $t<k$ in Theorem 1 can be removed. In defining $A_{k, t}(k n+t)$ for $t \geqq k$, we remark first that, when $t=k$, a possible rise may occur preceeding the extreme right hand element; however for $t>k$, such a rise is never counted. Clearly

$$
\begin{equation*}
A_{k, k}(k n+k)=A_{k, 0}(k n+k) \tag{5.1}
\end{equation*}
$$

We define $\tilde{A}_{k, t}(k n+t, x)$ and $F_{k, t}(z)$ by means of (3.1) and (3.5) for all $t \geqq 0$. Thus by (5.1) we have

$$
\begin{equation*}
F_{k, k}(z)=-1+F_{k, 0}(z) \tag{5.2}
\end{equation*}
$$

In the next place, for $t>k$, the recurrence (2.4) is valid. Then (3.4) is also valid and this in turn implies the truth of (3.8) and therefore of (4.10) and (4.14). Consequently (4.20) is also valid for $t>k$. It then follows that (4.27) holds for $t>k$. Moreover, it follows from (5.2) that (4.27) holds also for $t=k$.

We may accordingly state

Theorem 2. Let $k \geqq 2$, $t \geqq 0$. Then the generating functions $F_{k, t}(z)$ satisfy (4.26) and (4.27).

For $k=2$, it is easily verified that (4.26) and (4.27) are in agreement with the results of [1]. For $k=3$ we have

$$
\begin{align*}
& F_{3,0}(z)=1-x+\frac{x}{1+\sum_{n=1}^{\infty}(-1)^{n} \prod_{j=0}^{n-1}\left[1+9\binom{+1}{2}(1-x)\right] \cdot \frac{z^{3 n}}{(3 n)!}}, \tag{5.3}\\
& F_{3,1}(z)=\frac{z+\sum_{n=1}^{\infty}(-1)^{n}[1+3 n(1-x)] \prod_{j=0}^{n-1}\left[\begin{array}{c}
\left.1+9\binom{j+1}{2}(1-x)\right] \cdot \frac{z^{3 n+1}}{(3 n+1)!} \\
1+\sum_{n=1}^{\infty}(-1)^{n} \prod_{j=0}^{n-1}\left[1+9\binom{j+1}{2}(1-x)\right] \cdot \frac{z^{3 n}}{(3 n)!}
\end{array}\right.}{F_{3,2}(z)=\frac{\frac{z^{2}}{2!}+\sum_{n=1}^{\infty}(-1)^{n} \prod_{j=1}^{n}\left[1+9\binom{j+1}{2}(1-x)\right] \cdot \frac{3^{3 n+2}}{(3 n+2)!}}{1+\sum_{n=1}^{\infty}(-1)^{n} \prod_{j=0}^{n-1}\left[1+9\binom{j+1}{2}(1-x)\right] \cdot \frac{z^{3 n}}{(3 n)!}}} . \tag{5.4}
\end{align*}
$$

Thus

$$
\begin{equation*}
F_{3,0}(z)=1+x \frac{z^{3}}{3!}+\left(10 x+9 x^{2}\right) \frac{z^{6}}{6!}+\ldots \tag{5.6}
\end{equation*}
$$

The ten permutations with $r=1$ are:
$126345,136245,146235,156234,236145,246135,256134,346125,356124,456123$.
The nine permutations with $r=2$ are:
124356, 125346, 134256, 135246, 145236, 234156, 235146, 245136, 345136.

$$
\begin{align*}
& F_{3,1}(z)=z+3 x \frac{z^{4}}{4!}+\left(42 x+54 x^{2}\right) \frac{z^{7}}{7!}+\ldots \tag{5.7}\\
& F_{3,2}(z)=\frac{z^{2}}{2!}+9 x \frac{z^{5}}{5!}+\left(234 x+243 x^{2}\right) \frac{z^{8}}{8!}+\ldots \tag{5.8}
\end{align*}
$$

We shall not take the space to list the permutations corresponding to the terms in z^{7} and z^{8} in (5.7) and (5.8). The coefficient $9 x$ in (5.8) corresponds to the permutations
$12435,12534,13425,13524,14523,23415,23514,24513,34512$.

REFERENCES

1. L. Carlitz: Enumeration of up-down permutations by number of rises. Pacific J. Math. 45 (1973), 49-58.
2. L. Carlitz: Permutations with prescribed pattern. Math. Nachr. to appear.
3. E. Netto: Lehrbuch der Combinatorik. Teubner, Leipzig and Berlin, 1927.

[^0]: * Presented June 10, 1973 by D. S. Mitrinović.
 ** Supported in part by NSF grant GP-17031.

