442. ON A GENERALISATION OF FAN-TODD'S INEQUALITY*

Žarko M. Mitrović

In monograph [1], pp. 67-70, the following result due to Ostrowski is given:

Let $a=\left(a_{1}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, \ldots, b_{n}\right)$ be real nonproportional sequences. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ be a real sequence such that

$$
\sum_{i=1}^{n} a_{i} x_{i}=0, \quad \sum_{i=1}^{n} b_{i} x_{i}=1
$$

Then

$$
\sum_{i=1}^{n} x_{i}^{2} \geqq \frac{\sum_{i=1}^{n} a_{i}^{2}}{\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} a_{i}^{2}\right)-\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2}}
$$

with equality if and only if

$$
x_{k}=\frac{b_{k} \sum_{i=1}^{n} a_{i}^{2}-a_{k} \sum_{i=1}^{n} b_{i}^{2}}{\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)-\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2}} \quad(k=1, \ldots, n)
$$

The corresponding inequality for complex numbers is also given in [1].
The above result may be presented in the following form (see: [2], p. 383):
Theorem 1. Let a and b be linearly independent vectors in a unitary vector space V and let x be a vector in V such that

$$
(x, a)=0 \quad \text { and } \quad(x, b)=1
$$

Then

$$
G(a, b)\|x\|^{2} \geqq\|a\|^{2}
$$

with equality if and only if

$$
x=\frac{\|a\|^{2} b-(b, a) a}{G(a, b)}
$$

where $G(a, b)$ is Gram's determinant.
It is natural to try a generalisation of theorem 1 as follows:

[^0]Theorem 2. Let a and b be linearly independent vectors in a unitary vector space V and let x be a vector in V such that

$$
\begin{equation*}
(x, a)=\alpha \quad \text { and } \quad(x, b)=\beta . \tag{1}
\end{equation*}
$$

Then

(2)

$$
G(a, b)\|x\|^{2} \geqq\|\bar{\alpha} b-\bar{\beta} a\|^{2},
$$

with equality if and only if

$$
\begin{equation*}
x=\frac{(a, \bar{\beta} a-\bar{\alpha} b) b-(b, \bar{\beta} a-\bar{\alpha} b) a}{G(a, b)} . \tag{3}
\end{equation*}
$$

Proof. Let y be the vector in V given by

$$
G(a, b) y=(a, \bar{\beta} a-\bar{\alpha} b) b-(b, \bar{\beta} a-\bar{\alpha} b) a,
$$

i.e.

$$
G(a, b) y=\beta(a, a) b-\alpha(a, b) b-\beta(b, a) a+\alpha(b, b) a .
$$

Then

$$
\begin{equation*}
G(a, b)(y, y)=\|\bar{\alpha} b-\bar{\beta} a\|^{2} \tag{4}
\end{equation*}
$$

and
$G(a, b)(y, x)=\beta(a, a)(b, x)-\alpha(a, b)(b, x)-\beta(b, a)(a, x)+\alpha(b, b)(a, x)$.
Hence, in virtue of (1),

$$
\begin{equation*}
G(a, b)(y, x)=\|\bar{\alpha} b-\bar{\beta} a\|^{2} . \tag{5}
\end{equation*}
$$

From (4) and (5) we get

$$
\begin{equation*}
(y, y)=(y, x) \tag{6}
\end{equation*}
$$

Since
(7)

$$
\|x-y\|^{2} \geqq 0
$$

and using (6), we have

$$
\|x\|^{2} \geqq\|y\|^{2}
$$

Therefore, the inequality (2) is true.
According to (7), the equality holds in (2) if and only if $x=y$, i.e. if the condition (3) is satisfied.

The following result of FAN and Todd is also given in [1]:
Let $a=\left(a_{1}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, \ldots, b_{n}\right)(n \geqq 2)$ denote real sequences such that $a_{i} b_{j} \neq a_{j} b_{i}$ for $i \neq j$. Then

$$
\frac{\sum_{i=1}^{n} a_{i}^{2}}{\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)-\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2}} \leqq\binom{ n}{2}^{-2} \sum_{\substack{i=1 \\ i \neq j}}^{n}\left(\sum_{j=1}^{n} \frac{a_{j}}{a_{j} b_{i}-a_{i} b_{j}}\right)^{2}
$$

The Fan-Todd's result may be presented in the following form:

Theorem 3. Let a and b be vectors in a unitary vector space V. If $\left\{a_{1}, \ldots, e_{n}\right\}$ is an orthonormal basis of the space V and if $\left(a, e_{j}\right)\left(b, e_{i}\right) \neq\left(a, e_{i}\right)\left(b, e_{j}\right)$ for $i \neq j$, then

$$
\frac{\binom{n}{2}\|a\|^{2}}{G(a, b)} \leqq \sum_{\substack{i=1 \\ i \neq j}}^{n}\left|\sum_{j=1}^{n} \frac{\left(a, e_{j}\right)}{\left(a, e_{j}\right)\left(b, e_{i}\right)-\left(a, e_{i}\right)\left(b, e_{j}\right)}\right|^{2}
$$

The theorem 3 can be generalised as follows.
Theorem 4. Let a and b be vectors in a unitary vector space V, and let α and β be scalars. If $\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthonormal basis of the space V and if $\left(a, e_{j}\right)\left(b, e_{i}\right) \neq\left(a, e_{i}\right)\left(b, e_{j}\right)$ for $i \neq j$, then

$$
\begin{equation*}
\binom{n}{2}^{2} \frac{\|\bar{\beta} a-\bar{\alpha} b\|^{2}}{G(a, b)} \leqq \sum_{\substack{i=1 \\ i \neq j}}^{n}\left|\sum_{j=1}^{n} \frac{\left(\beta a-\alpha b, e_{j}\right)}{\left(a, e_{j}\right)\left(b, e_{i}\right)-\left(a, e_{i}\right)\left(b, e_{j}\right)}\right|^{2} . \tag{8}
\end{equation*}
$$

Proof. Let

$$
\begin{equation*}
\binom{n}{2} x=\sum_{\substack{i=1 \\ i \neq j}}^{n}\left(\sum_{j=1}^{n} \frac{\beta\left(a, e_{j}\right)-\alpha\left(b, e_{j}\right)}{\left(a, e_{j}\right)\left(b, e_{i}\right)-\left(a, e_{i}\right)\left(b, e_{j}\right)}\right) e_{i}, \tag{9}
\end{equation*}
$$

from which we deduce

$$
\begin{align*}
\binom{n}{2}(a, x)= & \sum_{\substack{i=1 \\
i \neq j}}^{n}\left(\sum_{j=1}^{n} \frac{\beta\left(a, e_{j}\right)-\alpha\left(b, e_{j}\right)}{\left(a, e_{j}\right)\left(b, e_{i}\right)-\left(a, e_{i}\right)\left(b, e_{j}\right)}\right)\left(a, e_{i}\right) \tag{10}\\
= & \beta \sum_{\substack{i=1 \\
i \neq j}}^{n}\left(\sum_{j=1}^{n} \frac{\left(a, e_{j}\right)\left(a, e_{i}\right)}{\left(a, e_{j}\right)\left(b, e_{i}\right)-\left(a, e_{i}\right)\left(b, e_{j}\right)}\right) \\
& -\alpha \sum_{\substack{i=1 \\
i \neq j}}^{n}\left(\sum_{j=1}^{n} \frac{\left(b, e_{j}\right)\left(a, e_{i}\right)}{\left(a, e_{j}\right)\left(b, e_{i}\right)-\left(a, e_{i}\right)\left(b, e_{j}\right)}\right)
\end{align*}
$$

However, we have

$$
\frac{\left(a, e_{j}\right)\left(a, e_{i}\right)}{\left(a, e_{j}\right)\left(b, e_{i}\right)-\left(a, e_{i}\right)\left(b, e_{j}\right)}+\frac{\left(a, e_{i}\right)\left(a, e_{j}\right)}{\left(a, e_{i}\right)\left(b, e_{j}\right)-\left(a, e_{j}\right)\left(b, e_{i}\right)}=0
$$

and

$$
\frac{\left(b, e_{j}\right)\left(a, e_{i}\right)}{\left(a, e_{j}\right)\left(b, e_{i}\right)-\left(a, e_{i}\right)\left(b, e_{j}\right)}+\frac{\left(b, e_{i}\right)\left(a, e_{j}\right)}{\left(a, e_{i}\right)\left(b, e_{j}\right)-\left(a, e_{j}\right)\left(b, e_{i}\right)}=-1,
$$

and so, (10) becomes

$$
\binom{n}{2}(a, x)=\frac{n(n-1)}{2} \alpha .
$$

Hence, we find

$$
\begin{equation*}
(a, x)=\alpha \tag{11}
\end{equation*}
$$

In the same way we prove that

$$
\begin{equation*}
(b, x)=\beta . \tag{12}
\end{equation*}
$$

Now, according to the theorem 2 and in view of (11) and (12), we get

$$
\begin{equation*}
\|x\|^{2} \geqq \frac{\|\bar{\beta} a-\bar{\alpha} b\|^{2}}{G(a, b)} . \tag{13}
\end{equation*}
$$

From (9) and (13) we obtain the inequality (8).

REFERENCES

1. D. S. Mitrinović: Analytic Inequalities. Berlin-Heidelberg-New York 1970.
2. S. Kurepa: Konačno-dimenzionalni vektorski prostori i primjene. Zagreb 1967.

COMMENT BY R. ASKEY

Theorem 2 is only a formal generalisation of the inequality of FAN and Todd. If one sets

$$
x=A y+B a,
$$

where $(y, a)=0$ and $(y, b)=1$, determines A and B by taking inner products

$$
\begin{aligned}
& \alpha=(x, a)=A(y, a)+B(a, a)=B\|a\|^{2}, \\
& \beta=(x, b)=A(x, b)+B(a, b)=A+\frac{\alpha}{\|a\|^{2}}(a, b),
\end{aligned}
$$

uses

$$
\|x\|^{2}=|A|^{2}\|y\|^{2}+|B|^{2}\|a\|^{2}, \text { since }(y, a)=0
$$

and then uses inequality of Fan-Todd on $\|y\|^{2}$, one obtains Theorem 2.

[^0]: * Presented April 12, 1973 by S. Kurepa.

