Gojko Kalajdžić

This Note is a supplement to the collection of inequalities appearing in Part 3 of the book: D. S. Mitrinovic Analytic Inequalities. Berlin-Hei-delberg-New York, 1970.

1. If $a_{k} \geqq 0, n \leqq a \leqq n+1, n=0,1, \ldots$, the implication

$$
\begin{equation*}
\sum_{k=1}^{n+1} \frac{1}{1+a_{k}} \geqq a \Rightarrow \prod_{k=1}^{n+1} a_{k} \leqq\left(\frac{n+1-a}{a}\right)^{n+1} \tag{1.1}
\end{equation*}
$$

is valid.
Proof. Let $\sum x_{1} \cdots x_{k}(k=1, \ldots, n+1)$ denote the sum of all products having the form $x_{i_{1}} \cdots x_{i_{k}}$ with $1 \leqq i_{1}<\cdots<i_{k} \leqq n+1$, and let $b^{n+1}=a_{1} \cdots a_{n+1}$.

The left-hand side of the implication (1.1) is equivalent to
i.e.

$$
\sum\left(1+a_{1}\right) \cdots\left(1+a_{n}\right) \geqq a\left(1+a_{1}\right) \cdots\left(1+a_{n+1}\right),
$$

$$
n+1+\sum_{k=1}^{n}(n-k+1) \sum a_{1} \cdots a_{k} \geqq a+\sum_{k=1}^{n+1} a \cdot \sum a_{1} \cdots a_{k}
$$

therefrom, upon a short arrangement and using the relationship between means of various sequences, it follows, one after the other:

$$
\begin{aligned}
n+1-a & \geqq \sum_{k=1}^{n+1}(a-n+k-1) \sum a_{1} \cdots a_{k} \\
& \geqq \sum_{k=1}^{n+1}(a-n+k-1)\binom{n+1}{k}\left(a_{1} \cdots a_{n+1}\right)^{\frac{k}{n+1}}=\sum_{k=1}^{n+1}(a-n+k-1)\binom{n+1}{k} b^{k} \\
& =(a-n-1) \sum_{k=1}^{n+1}\binom{n+1}{k} b^{k}+b\left(\sum_{k=1}^{n+1}\binom{n+1}{k} x^{k}\right)^{\prime} x=b \\
& =(a-n-1)\left((1+b)^{n+1}-1\right)+b\left((1+x)^{n+1}-1\right)_{x=b}^{\prime} \\
& =(1+b)^{n}(a-n-1+a b)+(n+1-a),
\end{aligned}
$$

i.e.

$$
(1+b)^{n}(a-n-1+a b) \leqq 0 \Rightarrow b \leqq \frac{n+1-a}{a},
$$

[^0]and finally
$$
a_{1} \cdots a_{n+1}=b^{n+1} \leqq\left(\frac{n+1-a}{a}\right)^{n+1},
$$
which was to be proved.
Example. If we put $a_{k}=\operatorname{tg}^{2} x_{k}(k=1, \ldots, n+1)$ in (1.1), for $n \leqq a \leqq n+1$ we get the implication
$$
\sum_{k=1}^{n+1} \cos ^{2} x_{k} \geqq a \Rightarrow \prod_{k=1}^{n+1} \operatorname{tg}^{2} x_{k} \leqq\left(\frac{n+1-a}{a}\right)^{n+1}
$$

Remark 1. In the book [1] implication 3.2.44 reads

$$
\begin{equation*}
\sum_{k=1}^{n+1} \frac{1}{1+a_{k}} \geqq n \Rightarrow \prod_{k=1}^{n+1} \frac{1}{a_{k}} \geqq n^{n+1} \quad\left(a_{k}>0 ; k=1, \ldots, n+1\right) . \tag{1.2}
\end{equation*}
$$

Implication (1.1) for $a=n$ reduces to (1.2). A rather complicated proof for (1.2) was given in Elemente der Mathematik 14 (1959), 132 by C. BindSChedier.
2. For $a_{i} \in[k,+\infty)(k=1,2, \ldots)$ we have

$$
\begin{equation*}
\frac{k}{k+1} \leqq \frac{\left(\prod_{i=1}^{n} a_{i}\right) /\left(\sum_{i=1}^{n} a_{i}\right)}{\left(\prod_{i=1}^{n}\left[a_{i}\right]\right) /\left(\sum_{i=1}^{n}\left[a_{i}\right]\right)} \leqq\left(\frac{k+1}{k}\right)^{n} \quad(n=1,2, \ldots) \tag{2.1}
\end{equation*}
$$

where $[a]$ denotes the integral part of the real number a.
Proof. Inequality (2.1) may be written in the form

$$
\begin{equation*}
\frac{k}{k+1} \leqq \prod_{i=1}^{n} \frac{a_{i}}{\left[a_{i}\right]} \cdot \frac{\sum_{i=1}^{n}\left[a_{i}\right]}{\sum_{i=1}^{n} a_{i}} \leqq\left(\frac{k+1}{k}\right)^{n}, \tag{2.2}
\end{equation*}
$$

in which it will be proved.
Since the sequence $\left(\frac{n+1}{n}\right)_{n=1,2, \ldots}$ decreases for any $x \geqq k$ the inequality $\frac{x}{[x]} \leqq \frac{k+1}{k}$, holds, so that the right-hand inequality in (2.2) follows directly because $\left[a_{i}\right] \leqq a_{i}(i=1, \ldots, n)$.

On the other hand, from $\frac{a_{i}}{\left[a_{i}\right]} \leqq \frac{k+1}{k}$ follows $\left[a_{i}\right] \geqq \frac{k}{k+1} a_{i}(i=1, \ldots, n)$. or, after the addition,

$$
\sum_{i=1}^{n}\left[a_{i}\right] \geqq \frac{k}{k+1} \sum_{i=1}^{n} a_{i}
$$

Since it is obvious that $\frac{a_{i}}{\left[a_{i}\right]} \geqq 1(i=1, \ldots, n)$, we conclude that the left-hand inequality in (2.2) is valid, too. Thereby inequality (2.2) as well as, inequality (2.1) is proved.

Remark 2. For $a_{i} \in[n,+\infty)$ we have

$$
\frac{n}{n+1} \leqq \frac{\left(\prod_{i=1}^{n} a_{i}\right) /\left(\sum_{i=1}^{n} a_{i}\right)}{\left(\prod_{i=1}^{n}\left[a_{i}\right]\right) /\left(\sum_{i=1}^{n}\left[a_{i}\right]\right)}<e
$$

Remark 3. The following inequality

$$
1 \leqq \frac{\left(\prod_{i=1}^{n} a_{i}\right)\left(\sum_{i=1}^{n} a_{i}\right)}{\left(\prod_{i=1}^{n}\left[a_{i}\right]\right)\left(\sum_{i=1}^{n}\left[a_{i}\right]\right)} \leqq\left(\frac{k+1}{k}\right)^{n+1}
$$

holds under same conditons under which (2.1) is valid.

COMMENT OF B. CRSTICI RELEVANT TO IMPLICATION (1.1)

P. Henrici (Elem. Math. 11 (1959), 112 ; see also D. S. Mitrinović: Nejednakosti, Beograd 1965, p. 165) proved the following implication

$$
0 \leqq a_{1}, \ldots, a_{n+1} \leqq 1 \Rightarrow \sum_{k=1}^{n+1} \frac{1}{1+a_{k}} \leqq \frac{n+1}{1+\left(\prod_{k=1}^{n+1} a_{k}\right)^{1 /(n+1)}}
$$

Therefrom it follows that if a is any positive number for which

$$
\sum_{k=1}^{n+1} \frac{1}{1+a_{k}} \geqq a, \text { then } \prod_{k=1}^{n+1} a_{k} \leqq\left(\frac{n+1-a}{a}\right)^{n+1}
$$

i. e. Kalajdžić's result is obtained for any possible positive a, but with $0 \leqq a_{1}, \ldots, a_{i+1} \leqq 1$. KALAJDžı́ć obtained that implication for any $a_{1}, \ldots, a_{n+1} \geqq 0$ but with a restriction for $a(a \geqq n)$.

Now, the following problem arises. P. Henrici proved that if a_{1}, \ldots, a_{n+1} $\geqq 1$, then

$$
\sum_{k=1}^{n+1} \frac{1}{1+a_{k}} \geqq \frac{n+1}{1+\left(\prod_{k=1}^{n+1} a_{k}\right)^{1 /(n+1)}}
$$

Therefrom, it follows that the implication

$$
\sum_{k=1}^{n+1} \frac{1}{1+a_{k}} \leqq a \Rightarrow \prod_{k=1}^{n+1} a_{k} \geqq\left(\frac{n+1-a}{a}\right)^{n+1} \quad\left(a_{1}, \ldots, a_{n+1} \geqq 1\right)
$$

is valid for $a_{k} \geqq 1$.
In the light of KALAJDžic's paper, it would be interesting to see which additional condition should be satisfied by a, in order to get that implication for any $a_{k} \geqq 0 \quad(k=1, \ldots, n+1)$.

AUTHOR'S COMMENT

It is not difficult to see that for the quoted proof of the implication (1.1) the conditton $a \geqq n$ is essential. However, the condition $a \leqq n+1$ is only formally quoted because $\frac{1}{1+a_{k}}$ cannot be greater than $n+1$.

Further, if we put $\sum_{k=1}^{n+1} \frac{1}{1+a_{k}}=b \geqq a$ in (1.1) we get

$$
\prod_{k=1}^{n+1} a_{k} \leqq\left(\frac{n+1-b}{b}\right)^{n+1} \leqq\left(\frac{n+1-a}{a}\right)^{n+1}
$$

where from Henrici's inequality follows

$$
\sum_{k=1}^{n+1} \frac{1}{1+a_{k}} \leqq \frac{n+1}{1+\left(\prod_{k=1}^{n+1} a_{k}\right)^{1 /(n+1)}}
$$

for any $a_{1}, \ldots, a_{n+1} \geqq 0$ for which $\sum_{k=1}^{n+1} \frac{1}{1+a_{k}} \geqq n$ (we encounter condition $0 \leqq a_{1}, \ldots, a_{n+1} \leqq 1$ in Henrici's paper).

As far as the implication

$$
\begin{equation*}
\sum_{k=1}^{n+1}-\frac{1}{1+a_{k}} \leqq a \Rightarrow \prod_{k=1}^{n+1} a_{k} \geqq\left(\frac{n+1-a}{a}\right)^{n+1} \tag{1.1}
\end{equation*}
$$

is concerned, from the quoted proof for the implication (1.1) it follows that the implication (1.1)' will hold for any $a_{k} \geqq 0(k=1, \ldots, n+1)$ if $0<a \leqq 1$ (namely, then $a-n+k-1 \leqq 0$ for $k=1, \ldots, n$).

If we put $\sum_{k=1}^{n+1} \frac{1}{1+a_{k}}=b \leqq a$ in $(1.1)^{\prime}$, then we get

$$
\prod_{k=1}^{n+1} a_{k} \geqq\left(\frac{n+1-b}{b}\right)^{n+1} \geqq\left(\frac{n+1-a}{a}\right)^{n+1}
$$

and therefrom Henricis inequality follows

$$
\sum_{k=1}^{n+1} \frac{1}{1+a_{k}} \geqq \frac{n+1}{1+\left(\prod_{k=1}^{n+1} a_{k}\right)^{1 /(n+1)}}
$$

for any $a_{1}, \ldots, a_{n+1} \geqq 0$ with $\sum_{k=1}^{n+1} \frac{1}{1+a_{k}} \leqq 1$ (we encounter condition a_{1}, \ldots, a_{n+1} $\geqq 1$ in Henrici's paper).

REFERENCES

1. D. S. Mitrinović (with cooperation P. M. Vasić): Analytic Inequalities. Berlin--Heidelberg-New York, 1970.
2. D. S. Mitrinović - P. M. Vasić: Généralisation d'une inégalité de Henrici. These Publications № 210 - № 228 (1969), 35-38.
3. D. S. Mitrinović. Elementarne Nierówności. Warszawa, 1972, p. 141.

[^0]: * Presented April 1, 1973 by D. S. Mitrinović and B. Crsticr.

