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415. A PROBLEM OF A. OPPENHEIM*

P. S. Bullen, P. M. Vasié, Lj. Stankovié

0. In [4] A. OppeNHEIM asked the following question:

Suppose a,,...,a, and b,,..., b, are two sets of positive numbers. If the
arithmetic mean of the b, is at least equal to that of the a;, when can we say that
the geometric mean of the b, is at least equal to that of the a, and that equality
will require equality in some order of the a; and b;?

When n=2 the only non-trivial situation, if we assume, as we may, that

a,sa,, b <b,

1s when

Then clearly b, +b,=a,+a, implies b,b,=a,a, as is teen from the simple
identity,
bb,—aa,=((b;—a)(@,—b)+b (b +b,—a,—a,);

equality occurs only when @, =b, and a,=b,.

This case also follows from the case n=3 (by taking b,=a,) which was
completely solved in [4]; in a later paper [5], the same author showed that
the hypothesis sufficient to answer his question gave in fact a stronger result.
The problem of n>>3 was posed in [4] where it was pointed out that the obvious
extension was false. An extension to general n was given a little later by
E. K. GobuNovAa and V. I. LEvIN [2]; (compare Theorems 1 and 2 below).
Another extension to arbitrary n was given by P. M. Vasi¢ in [7].

Before stating these results let us introduce some standard notation. Let
k

(W) =(w,,..., w,) denote an n-tple of positive numbers and write W, = 2. w,
i=1

* Presented June 5, 1973 by D. S. MiTriNOVIC.
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(1<k<n). If (@=(a,,...,a,) is another such n-tple write
' 1

M3 (a; w)=(;Vl— > ai'W:)r O <|r[<+ ).

n =1

i

=min (g,,...,a,) (F=—®),
=max (a,,...,a,) (r=+ ).

More generally if @ is a strictly monotonic function
M@ ) =071 (- S @@
VV" i=1

If r=1,0, —1 there are special notations: MM (a; w)=A,(a;, w); 1 (a; w)=
G, (a; w); M@ wy=H,(a; w). If w=...=w, we will just write MU (a),
A, (a) etc.

1. The main result of OPPENHEIM is

Theorem 1. Let (a), (b) be two triples of positive numbers satisfying
(h) the elements of (b) lie between the greatest and least element of (a).

If Ogocg% and

A, (b)z 4, (a),
then
A, (D .
(1) G, (b) = {A—()} Gs(a);
in particular
(2) G, (b) =G, (a).

Equality occurs in (1) or (2) if and only if the (a) is a rearrangement of (b).

The proof of (2) is given in [4] and that of (1) is the main purpose of [5].
Clearly inequality (1) for any particular « (Og ugé) implies, given the hypo-

thesis, the same inequality for smaller «. In particular oc=; is the strongest

inequality; in [S] OPPENHEIM shows that if «>2/3 the inequality no longer holds
in general,

Since, in Theorem 1, we can obviously assume (a), and (b) to be monotonic
increasing, the hypothesis (%) is equivalent to a,<b, and b,<a,. The problem
posed by OPPENHEM in [4] was to find a suitable generalisation of (f): this was
done in [2]. The GopuNovA—LEVIN extension of Theorem 1 is
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Theorem 2. Let n>2 and (a), (b) be two n-tples of positive numbers satisfying
0<g,=... Za,,

0<b =... <b,F,

b, (1= i =n—m, 1=mxn),

a;zb; (n—m+2=i<n).

(H)

(If m=1 the last condition is understood to be vacuous; if m=n the next
to last condition is taken to be vacuous).
P,

If (p) is another n-tple of positive numbers, 0 <o<1—_222 gnd

A4,0b;pzA,(a p)

n

then
Ay (b; p)
3 G,(b; z—i—}Gna;;
©) & pz{3 026 @ p)
in particular
G,(; P) =G, (g p)

If n=3, m=2 then hypothesis (H) is equivalent to (k) as noted above; if
in addition p,=p,=p, Theorem 2 reduces to Theorem 1. Although not stated
in this form in [2], it is proved there as a simple corollary of a more general
result that is given below (Theorem 7).

2. A natyral extension of OPPENHEIM’s problem quoted above is to replace arith-
metic and geometric means by more general means. OPPENHEIM did not ask this

question although some of his results give partial answers to this more general
problem; more surprising is the fact that the question was not raised in [2] as

their general theorem can b¢ wigd 19 AUSYSI part of (hid problsm,
More Preci:ely we are asking: if it is known that the s-th Power meang

of (a), (b) are in a certain order when can we deduce that the same order holds
between their #z-th power means?

In section 1 we dealt with the case s=1, =0; in [4, 5] the case s=0, =1
as well as some other cases were given.
Theorem 3. Let (a), (b) be two triples of positive numbers satisfying (h).
@ If r>0 and
MY 6y = MY (a)
then
G, (b)=G;(a).
@) If
G;(0)=G;(b)
and if r>0 then
MY (@) = MY (b).
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(iil) If
4, ()= 4, (@)
then
H,(@)= (%2)3 H, (b).
@) 1f 3
H,®)z(20) H @
then
A (@) < 4, (b).

Equality occurs only when (a) is a rearrangement of (b).

Parts (iii) and (iv) are weaker than the ,natural“ answer to the above ques-
tion. Parts (i), (if) are easy extensions of the case r=1; in [5] it is shown that
whereas (i) can be sharpened to (1), no such extension is possible for (i).

3. Theorem 4. Let O: R, —R be increasing and concave and suppose (a), (b) are
two n-tples of positive numbers satisfying (H). Let (p) be another n-tple of posi-
tive numbers, if

4 A, (b; p)= 4, (a; p)
then

()

M=

o (bi) pi= 2 o (a,.)p,-;

[

i=1
if ® is strictly increasing, then
(6) M (5; p)= MY (a; p).
If @' is positive at one point at least then equality occurs in (5) if and only if
a,=b1=i=n).

Proof. Let ¢,=7b;,+(1—2)a, (1=<i<n); then (c) can replace either (a)
or (b) in (H); in particular (c) is increasing.

Note that since ® is concave P’ exists except on a countable set and is
decreasing; further since ® is increasing @’ is non-negative.

Define

FN)= :ZI 0, @ (c;h.

Then it is necessary to prove that F(1)= F(0), since F’ exists except on a coun-
table set it is sufficient to prove F’(2)=0 whenever it exists.

If 1<i<n—m then b,=aq, and, from the above remark, @' (¢)=D' (¢c,_,,+,)»
hence,

2:1 p;(b;—a) ol ()= .gl p;(b,— a,) D (Cpepm1)s
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similarly if n—m-+1<i<n, b;<a,, so

Z RACEOLIOE > Pilb=a) O ().

i=n—m i=n—m+

From these remarks the following inequalities are easily checked

Fn= 2:1 pi(b;—a) @' (c)

n

Z i (b;— @) O (Cy ) = 0;

which completes the proof of (5).
Inequality (6) and the cases of equality are immediate.

By inspection of the above proof similar results can be obtained using diffe-
rent hypotheses on @; in summary they are as follows,

(A) If ® is convex and increasing the inequality (4) is reversed then ine-
qualities (5) and (6) are reversed.

(B) If ® is convex and decreasing then inequality (5) is reversed but
(6) holds.

Consider the case @ (x)=x":

(i) if O<r=1 the hypotheses of Theorem 4 hold:
(&) if r=1 then hypotheses in (4) hold;

(#i7) if r< 0 then hypotheses in (B) hold.

If ®(x)=Ilogx the hypotheses of Theorem 4 hold. If @ (x)=e**, then
hypothesis (4) holds if A>0 but if A<<0 then (B) applies.

These are sufficient to completely solve the problem posed above.
Corollary 5. Let (a), (b) be two n-tples of positive numbers satisfying (H) and
(P) another n-tple of positive numbers. If — oo <<S<C 4 oo then

@) if
M (b p)= M} @ p)
and if t<s, then
o W ®; p)= MY (a; p);
(i) if
M (a; p) = M5 (5; p)
and if t>s, then
(8) M (a; p) = MY (b; p).
Equality occurs in (7) or (8) if and only if a,=5b, (1 <i<n).

Corollary 5 has a very interesting implication.
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Corollary 6. Suppose (a), (b) are two n-tples of positive numbers, one not being
a rearrangement of the other; suppose further that (p) is another n-tple of positive
numbers. If

©) M (@ p) <My (5 p), MY (g p)>MET (s p)
then if (@), (b) satisfy (H) there is a unique s (— oo <S< + o) such that
(i) i t<s then M) (a; <MY (b; p);
(i) if t>s then MY (a; p)>MY (b; p);
(iii) M5 (@ p)=M5 (5; p).
Proof. Immediate.

This poses the following interesting question: suppose instead of (9) we
assume that for some u, v, (—0e = u <<v £ + ),

M@ p) <M (B;p) MY p) > M (B p)
does an s (u<<s<v), exist with the properties similar to those in Corollary 6?

4. A part of corollary 5 (i) follows from the result of GopuNovAa and LEVIN,
[2], although they did not state this explicitly. In fact a stronger result holds
— an analogue of (3); since as we have pointed above OPPENHEIM showed that
such an analogue does not hold in general, [5], all of Corollary 5 cannot be
obtained in this way. The main theorem in [2] is

Theorem 7. Suppose (a), (b) are two n-tples of positive numbers satisfying (H)
and let (p) be another n-tple of positive numbers. Let ®:R _—R be such that (i)
D is concave, (ii) ® is increasing, (iii) x O’ (x) is increasing. If

(10) A,(; )= 4,(a; p)
then if 0<a<1-— nP_m
(11 4, (® (a); p)—o® (4, (a; ) < A4, (P (b); p) — 2P (4, (b5 P)

(@ (@) denotes the n-tple (P (a,), ..o, ©fay).
Inspection of the proof in [2] gives the following.

(4) If @ is convex and increasing with x @’ (x) increasing and if inequa-
lity (10) is reversed then inequality (11) is reversed.

(B) If @ is convex and decreasing and x @' (x) is decreasing then inequa-
lity (11) is reversed.

Corollary 8. Let (a), (b) be two n-tples of positive numbers satisfying (H) and let (p)

be another n-tple of positive numbers. If 0<a=< 1'—% and — o0 <5<+ oo then
@) i

(12) M7 6 =M @ p)
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and if t<s,
(13) (MY &5 p)) — (M5 (B; p)
2 (MY (@ p)) —a (MY (@ )} (£5£0),
(14) G, (b p) = [_M w &) ]“ G,@p)  (t=0),
MY a; p)

(if) if we assume the reverse of (12) and if t>s the reverse of (13) or (14)
holds. Equality occurs in (13) or (14) if and only if a,=b;, (1< i <n).

Proof. Immediate from Theorem 7 taking @ (x) variously equal to x’,
log x or e~

It was pointed out in [5] that if in (i) we take s=0, #=1 the inequality
analogous to the reverse of (14) does not hold in general (i.e. with G, replaced

by 4, and M Bl by G,); the correct inequality is now seen to be the reverse of
(13) (with 5=0, t=1).

5. Theorem 4 can be generalized by replacing the conditions (H) by (F) below,
based on a classical condition due to HARDY, LITTLEwooD and POLYA, [6, p.
162—166].

Theorem 9. Let (a), (b), (p) be n-tples of real numbers with (a) and (b) satisfying

blé.‘ .ébn,

k k
(F) 2 aps 2 bp  (Isks=n-m, 1=ms=n),

Za,.p,gaipi n—m+2=<k<n).
=k i

(If m=1 the last condition is understood to be vacuous, if m=n the next to last
condition is taken to be vacuous.)

(i) If ®:R— R is concave and
(15) 2 bip= 2 ap,

then (5) holds.
(i) If ®:R— R is concave and increasing and (4) holds, i.e.

21 bipig ;:1 a; p;
then (5) holds; further equality holds under the same conditions as in Theorem 4.

Proof. Let us define (¢) and F as in the proof of Theorem 4. Then, taking
note of the remarks in that proof, it is sufficient to prove that F’=0.
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Let us write
k k
By= 2 bp A= 2 ap,  (1=k=n);
i= i=

Ay,=B,=0;
Bi=B,-B,, Ai=A,—A, 1=k <n).
Then

F ()= gl p;i(b;—ay®'(c)
= E::l (B;— AP (c) — D" (c; )}

n—1
+ 2 +1(A§' —B){®' () — V' (¢;+1)}

-+ (Bn - An) 0 (cn—m+1) :

With the hypothesis (F) and the hypotheses of @ this identity gives F'(A)=0 as
had to be proved. The case of equality is immediate.

REMARKS. (i) If the weights (p) are non-negative then clearly (H) implies (F). More however

is true: (H) and (4) imply (F), with m=1, and (4); quite obviously a;<b; (1<i<n—m) implies

A <By, (1Sk=<n—m) and if k>n—m then Ay — A,—Ak<B,—Bk=B;, by (H) and (4). The

converse is false as is seen by taking n=3, p,~p,=p,=1, a,=1, a,=a,=5, b, =b,=3, b;=6.
(ii) In Theorem 9 (ii) if @ is strictly increasing clearly (6) holds.

(iit) As with Theorem 4, inspection of the above proot shows that similar results can
be obtained with different hypotheses. Some of these are as follows.

(x) Assumptions: (a) and (b) decreasing; rest of (F) the same; ® convex; (15) holds.
Conclusion: (5) holds.

(B) Assumptions: as in (x) except that @ is convex and increasing and (4) helds. Same
conclusion as ().

(Y) Assumptions: (a), (b) increasing; rest of (F) reversed; (4) reversed; ® convex and
decreasing. Conclusion is that then (5) holds.

(8) Assumptions: (a), (b) increasing; rest of (F) reversed; (4) reversed; @ concave and
increasing. Conclusion is that the reverse of (5) holds.

(iv) Theorem 9 («) is a slight extension of a result of L. FucH’s [6, p. 165]; FucH’s
result is the case m=1. :

The possibility of replacing the hypothesis (H) by (F) in Corollary 5, and
hence Corollary 6, is not immediate. Corollary 5 is proved by applying a sui-
table particular case of Theorem 4 to the sequences (a°) and (&°); this is pos-
sible since if (q) and (b) satisfy (H) so do (a) and (b%); the case s<0 needs
slight extra modifications. Whether this is so for hypothesis (F) is the subject
of the next corollary.

Corollary 10. (i) If hypothesis (F) with m=1 holds for (a) and (b) and if ® is
concave increasing then it holds for (® (a)) and (@ (b)).

(if) If hypothesis (F) with m=n holds for (a) and (b) and if ® is convex
increasing then it holds for (® (a)) and (@ (b)).
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(iii) If hypothesis (F) with 1<<m<n holds for (a) and (b) and if ® is linear
increasing then it holds for (® (a)) and (@ (b)).

Proof. As the proof will show it is sufficient to consider (iii). Since @ is
increasing
(I) (al) é t §(D (an)9 q) (bl) é A éq) (b").

Now apply Theorem 9 (ii) to (a;,...,q,), and (b;,..., b)) (1=sk<n—-m) to
get that

k k
20@ps20b)p  (sksn—m).
i=1 i=

Finally apply Theorem 9 (8) to the sequerces (b,,b,_,,...,5,) and
@, a,_»....,a) (n—m+2=k=<n) to get

n

Zcp(a)p, En:k(D(b,.)p,. (n—m+2<k=n).

i=k

REMARKS. (i) It follows from this that in general Corollary 5 will only extend partially
depending on which hypothesis (F) is chosen.

Given three n-tples (a), () and (p) with (a) and (b) decreasing, i.e..
az-- - za, blg...gb’l

then let us say for a given @, strictly monotonic, that (b) ®-dominates (a) with
weight (p) if

MI b pzM™(@p) (1sksn);

in particular we will say that (b) s-dominates (q) with weight (p) if @ (x)=x°
(s#£0), ®(x)=logx (s=0); finally if s=1 we will just say (b) dominates (a)
with weight (p).

REMARKS. (i) For all ® and (p) this defines an order relation on the set of decreasing n-tples.

(#) If s=1, p,=--- =p, then this order reduces to one introduced by HarpY, LiT-
TLEWOOD and POLyA [6, p. 163].

(iii) Theorem 9 (B) shows that if (b) dominates (a) w1th weight (p) then () @-domi-
nates (@) with weight (p) for all convex strictly increasing @.

Corollary 11. If (b) s-dominates (a) with weight (p) (— o0 << § << + ) then (b)
t-dominates (a) with weight (p) for all t>s.

Proof. (i) Suppose s> 0; then the hypothesis is equivalent to saying (b°) domi-
nates (&%) and so the result follows from the preceding remark (iii) with @ (x) = x"

(r=i, t>s>.
s
(ii) Suppose s<<0; then the hypothesis is equivalent to saying that the

increasing sequences (@), (b°) satisfy the reverse of the remaining inequalites of
(F), m=1, and the reverse of (4). Then if >0 and @ (x)=x" <r=i> the result
S
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follows from Theorem 9 (y); if =0, @ (x)=x" (r:i, t;éO), @ (x)=log x,

s
t=0 the result follows from Theorem 9 (3).
(iii) A similar argument covers the case s=0 using @ (x)=e™* (¢>0).

6. It would be of interest to know if similar results hold for the symmetric and
counter-harmonic means, [3, p. 79].
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