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411. NUMERICAL ANALYSIS OF THE SOLUTION
OF BESSEL’S DIFFERENTIAL EQUATION*

Savo M. Jovanovi¢

1. INTRODUCTION

In the vast literature of BESSEL functions which represent solutions of the
BesseL differential equation

d’w 1 dw (1 v’) 0
—— ot — — 4 l——)w=
dz?2  z dz 22

we encounter two kinds of their elementary expansions. The first kind consists
of convergent power series of BESSEL functions obtained by solving the BESSEL
differential equation in the vicinity of the regular singularity z=0, where as
the second kind of expansions are the asymptotic ones, obtained by HANKEL
in solving the BESSEL differential equation in the vicinity of the irregular
singularity z— oo. The convergent series are arranged by the positive powers
of the argument z and they converge uniformly in the whole region, whereas
the HANKEL expansions are arranged by the negative powers of that argument
satisfying the POINCARE criterion [1]. The convergent series are practically
applicable to the numerical calculations of BESSEL functions of small absolute
value of the argument, while the asymptotic expansions become applicable for
large values of the argument. On the other hand the range of practical appli-
cability of convergent series is becoming wider for larger values of the order v,
whereas the region of apparent convergence of asymptotic expansions is getting
narrower. However, apart form all these facts there is a region in which
none of these series is practically applicable. This region is known in literature
as the region of large order and large argument, but a more definite definition
for it was not given so far.

With the development and application of new methods and procedures,
the polynomial asymptotic expansions have been developed which facilitate
numerical calculations of BEsseL functions of positive values of the order v

* This paper is part of the dissertation submitted by S. Jovanovi¢ to the Faculty of
Electrical Engineering, University of Belgrade, in partial fulfilment of the requirements for
the Ph. D. degree.
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and of the argument x in the region of large order and large argument. However,
the region of their application is not strictly defined. We distinguish three types
of expansions with respect to the ratio x/v: x/v>1, x/v<<1 and x/v=1.

MeEisseL. has obtained the asymptotic expansions of the BESSEL functions
for all three cases [2] in an elementary way, using a convenient substitution
of variables in the BEsSeL differential equation. By developing and applying the
method of the steepest descents in the theory of contour integrals [3], DesYE has
designed the adequate contours for the given cases starting form the SOMMERFELD’s
integrals of HANKEL functions, and by a convenient substitution of variables
he has obtained the asymptatic expansions of BESSEL functions for real [3] and
complex values of the order and argument [4].

The investigation of MEISSEL’s expansions shows that they are convenient
for numerical calculations of J, (x) and Y, (x) in the case of x=v+ O (v'/3), while
the DEBYE expansions appear to be applicable if |x—v| is large with respect
to v1/3, Thus there appears a region of transition when |x—v| is comparable
to v!3, where none of these expansions is applicable [5].

NICHOLSON has obtained asymptotic expansions applying KELVIN’s principle
of the stationary phase. These expansions satisfy the region of transition of
MeisseL’s and DEBYE’s expansions, but they cannot be expressed by elementary
functions [2. p. 248]. ,

F. W. J. OLvER has obtained asymptotic expansions of the HANKEL func-
tions H,® (v +1v3) and HP (v+w13) for large v, where T is a constant,
applying “‘the method of the steepest descents”, These expansions satisfy the above
region and they are very convenient for the analysis of the zeros of the BESSEL
functions J,(x) and Y, (x).

Besides the recent papers of OLVER [6, 7] it is worth mentioning C. S. MEDER
[8], and W. G. BickiLey [9], who succeeded by an elementary approach to
obtain the asymptotic expansions for real values of the order and argument,
which are very convenient for practical calculations [10]. However, all these
expansions are polynomial. They are given with a finite number of terms
which cannot be generated recursively., The regions of their application are
not strictly defined and therefore, besides tabular constructions, they did not
find practical application in the automatic control of the calculation processes
using modern digital computers,

By summation of alternative series on a finite hardware format of a digital
computer an error is induced which is proportional to the difference of the
powers of the absolute values of the maximal term and the sum of the summed
series. This error is known as the “round-off error” but it could be called
also the “‘error of numerical truncation’. The question of the maximal term is
directly connected with the convergence speed of ‘the convergent series, and
with the apparent convergence speed of the asymptotic expansions respectively.
Thus the problem of the region of large order and large argument can be stated
from the numerical truncation error aspect as well as from the aspect of
analytical truncation error, appearing if the first omitted term is not negligible
with respect to the sum of previous terms on the given hardware format of
the digital computer., The error of analytical truncation may be relevant for all
asymptotic expasions, because the summation of their terms is limited by the
summing of the term of minimal absolute value [1].
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These are the main reasons for the practical inapplicability of the existing
series and expansions for generating the BESSEL functions on digital computers
by automatic control of the calculation processes in an arbitrary region
of the order and the argument, and they have hereby caused the emergence of
new procedures. However, these procedures have shown their own disadvanta-
ges. The procedures of classical interpolation by orthogonal polynomials [11,
12, 13, 14, 15], the phase — amplitude procedure [15, 16, 17], and the quadra-
ture procedure [18, 19] have the same or similar limitations [20, 21, 22]. A
strict application of the recursive techniques [23. pp. XVII, 21, 24, 25, 26]
requires an iterative procedure of generating a set of functions in order to
test the necessary choice of the position of the initial functions or the tabular
orientation of these positions. In the former case it is possible to satisfy an
arbitrarily given error on account of the procedure speed, while in the latter,
the error is satisfied in the predetermined region of the arguments (v, x).

By stating the criterion of the maximal summand in the analysis of numeri-
cal truncation error and by analysing the term of minimal absolute value in
the estimation of analytical truncation error in summing the HANKEL asymptotic
expansions, the separation of the region of favourable convergence of convdrgent
series, from the apparent convergence of the HANKEL expansions has been per-
formed and the region of large order and large argument (v, x) has been defi-
ned in this way. By the analysis of the absolute values of the maximal terms of
the convergent series and the HANKEL expansions of BESSEL functions it is shown
that the curves of equivalent values of these terms are at the same time the
curves of equivalent indices, and also that they converge asymptotically to
the second order paraboles. The first of these curves are paraboles in x, and
the others are paraboles in v. However, in both cases the absolute values of
maximal terms can be asymptotically represented by a unique function

et
V2ag’

where { is the index of the maximal term. On the other hand, it is shown
that the curve of mutual cross sections of the corresponding curves of these
two families converges asymptotically in an oscillatory manner into a straight
line with very small initial amplitudes. Therefore, if the point (v, x) is below
this line and the value of the function ¢ ({) exceeds the one corresponding to
the permitted absolute error for a given index of the maximal term of a con-
vergent series, or if the point (v, x) is above the line and the value of the given
function is greater than the value corresponding to the permitted absolute error
for a given index of the maximal term of the HANKEL expansions, one can say
that the point (v, x) lies in the region of large order and large argument.

@)=

Starting from these regularities it is possible to speed up considerably the
procedure of generating any kind of BESSEL’s functions in the whole region of
the arguments (v, x), by applying elementary series and expansions for direct
calculation outside the region of large order and large argument and by modifi-
cation of the recursive procedure for the calculation of the functions in the
region. This may be of special interest for generating the BesSEL functions of
a complex order and argument too. The analysis presented here is concerned
with real values ot the order and the argument.
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2. ANALYSIS OF THE TERMS OF ELEMENTARY SERIES WITH
EXTREME ABSOLUTE VALUES

Let us consider the normalized series of BESSEL’s functions of the first
kind (of order v)
2 (x/2)’m
E,(x)= -y
() mzo( ) ml(v+1)m
where
T(v+m+1)

. =
(V+ )m Cv+1)

and the HANKEL asymptotic expansions of the modified BESSEL functions of the
second kind

< (v, n)
F,(x)~> e

n=0

where (v, n) is HANKEL’s symbol:

o, n)E(4v2—'12) (4v*—3)- - - [4v’=2n—1))] ’
2!

v, 0)=1,

for real and positive values of the arguments v and x.

The functional series E,(x) converges uniformly in the whole region of
the agrument x. Depending on the relation between the agruments v and x,

(x/2)?>m (v+m),

its terms increase in absolute value up to the term of maximum absolute value
of index M,
1 — 1 (/=7
M= [? (Vx2+v2—v)] é;(l/xz—i—vz—v): 7

and then they decrease monotonically.

The functional series F,(x) converges asymptotically in the region of the
agrument x.

Its terms increase up to
4v:i—-(2n—1)2>8nx

i. e., up to the maximal term, of index A,
- N2 o 8 T ANV e YL
A_[\/(x_?) Ay (x 2)]§\/(x 2) vy (x 2)"1’

and then, under the condition that v#n—%, they decrease to

4v2-(2n-1)*> —8nx,

ie., to the term of minimal absolute value, of index x,
1\2 1 1\2 1 1
k= \/ x+v) TV S LY PORREL g\/(x+—) +v2——+(x+—)=x
2 4 2 2 4 2

and then they increase without a limit,
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In the case of v=n~%, the asymptotic series is interrupted and it

transforms into a finite sum. The cylindric functions transform into spherical
ones, expressed by elementary functions.

In the opposite case, for n>v+%, the asymptotic series F,(x) becomes

alternative and therefrom the previous condition of the negative slope of its
terms follows.

For n<v+%, the terms of the asymptotic series F,(x) are positive and

there is no problem in their summation. However, these terms form alternative
series of BESSEL’s functions of the first and second kinds, J, (x) and ¥, (x), thus
the problem of their summation in the region of apparent convergence, to the
minimal term, is adequate for the problem of summation of convergent series
of the given functions.

By summing up the term of maximal absolute value and the numeric trun-
cation error is induced whose level canot be reduced by further summation
to the term of negligible absolute value.

On the other hand, the term of minimal absolute value of the asymptotic
series defines the region of their application from the analytical trucation error
point of view.

In the following text we shall understand under the extreme values the
extreme absolute values.

2.1. Analysis of the maximal terms of the convergent series E, (x)
Let us consider the function of the maximal term of the series E,(x) as
a function of continuous values of the index p, (§ 2),

I x/2**T (v+1)
T+DT+p+l)

g(V, x) =
Substituting « = x/v, we obtain
p=" (VT107-1)

and by the further substitution of

o= 27 ,
1—7?
we obtain
. 2
=V .
28 i

Let us consider now sufficiently large values of the agruments v and x, so that
we can apply STIRLING’s asymptotic formula for the Gamma-functions,

T (z+ )~}2 7z (zfe) {1 10 (%)} .
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Applying these relations, after a short rearrangement, we obtain an asymptotic
expression for the function of the maximal term in the form:

1—n2 v 1 1 1
g™ H)~\/zn2. 82“(—v+y.) [”0(7’? v+u>}'

Let us consider now the locus of equivalent values of the function g (v, 9; w), i.e.

g0, 5 p)=C,.
For the existence of curves for any values of v, and for v—»+ = too, there
must obviously exist the limiting values

lim %=0, lim p=p,.

v—>+ 00 y—>-- 00
Consequently, the limit of the asymptotic functions g(v, ; ), when
v—+4 o0, can be expressed by the function
A

VZ Telko ’

? (o) =
and the asymptotic forms of the curves of equivalent maximal terms by para-

boles of the second order
1 x\2 2}
Ve~— I —) — N
[T {(2) to

as follows immediately from the definition of the maximal term.

2.2. Analysis of the maximal terms of the asymptotic expansion F, (x)

Let us consider, as previously, the function of the maximal term of the
series F,(x) as a function of continuous values of the index 2, (§2),

1
T{v+r+-—
1 (" 2)

T@OAT (1) F(v—7\+%) '

h(v, x)

Considering sufficiently large arguments v and x such that v, x>%, we can
write:
raev(v/T + o2 —w),

where «, as in § 2.1, is

=% and a= 2n
v 1—n?

respectively, so that A~y 1—_7’-.

147
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Applying STIRLING’s formula for sufficiently large values of the arguments
v and x xnd rearranging the expression of the function of the maximal term
h(v, x), we obtain its asymptotic form:

1 v+ A\ 1 1 1
hV,)\N *__.e—)\(h) 1+0 > ’
%) V2 V=2 VI W SV W
2 2
The condition for the existence of the curves of equivalent values of the
function A (v, A),

h (V, 7\) =C;\
for any value v, including v— +- o0, are the following limits

limy=1, limA=2,.

v—>+- o0 v=—>-{- 00

Consequently, we arrive at the same conclusion as in the previous section:
along the lines of equivalent maximal terms, the index of the maximal term
approaches a limiting value, and the function of the maximal term can be
expressed in the form

eho

V21

where in both cases p, and A, are the limiting values of the indices of the
maximal terms of the corresponding series, The asymptotic curves of the
equivalent maximal terms of the asymptotic expansions can be obtained in a
similar way as the asymptotic curves of the equivalent maxim:.l terms of the
convergent series from the definition of the maximal term under the condition
of the existence of its limiting value, A,

()=

1 2 2
X~ Ve — .
27\0( )\0)

2.2.1. Analysis of the minimal terms of the asymptotic expansions

Using the relations for the indices of the maximal and minimal terms
of the asymptotic series F,(x), A and %, §2, it is easy to obtain the inverse
relations for the arguments x and v:’

x=ﬂ(l —L) and vzzxx(l— 2 )+i.
2 ®+A K+ A 4

For sufficiently large values of the arguments x and v, such that x, v>1/2,
it follows that:

Axa/x2+vi—x and x ~A/x7 V24,
or

—A
x zx—z— and vi=uA

respectively .
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Contrary to the previous analysis, where the index of the maximal term
was A<<v, we have the opposite case here. The index of the minimal term is
larger than the order of the function and for a given A it increases with the
second power of the order. Consequently it is convenient to consider the
behaviour of the minimal term along the curve of equivalent maximal terms
(A =const).

Applyng the relation between Gamma-functions and the sine function, we
can obtain the function of the minimal term of the asymptotic expansmn
F,(x), for continuous values of the index x, (§2), in the form

F(v, x)=MF(x+v +i)r(n_v+i .
T @ L (et 1) 2 2

Applying STIRLING’s formula, and after some rearrangement, one obtains the
asymptotic form of the function of the minimal term:

fo, x)~\/~cos [n(x—v)]e—u(“") {1+0,)}.

For sufficiently large values of the order v, along the curves of equivalent
maximal terms, (A=const) substituting v?=x}, one obtains:

f, x)N\/% cos [ (x —v)] e,

The minimal term is a function of integer values of the arguments A

and » and it reduces to zero in the case of v:[x]~%.

The amplitudes of the previous function may be of interest to us as
predictions for the analytic truncation error in the application of the asymptotic
expansions to numerical computations of BESSEL’s functions. Introducing the
argument x we can write

—
Jo(x, M) = \/me_zx”‘,

where A is the index of the maximal term.

2.3. Locus of the equal maximal terms of the convergent series E,(x)
and the asymptotic expansions F, (x)

Comparing the general asymptotic expressions for functions of maximal
terms of convergent series (§ 2.1) and of asymptotic expansions (§ 2.2.), we
obtain an asymptotic curve of mutually equal absolute values of maximal terms
of convergent series and HANKEL’S asymptotic expansions

L = )
\/zmeu(vw) 1+0u(35 N 140,
where p, A and » are variables defined by the relations in §§ 2.—2.2, and v

is the order of the BEsSeL functions, and the argument of the series E, (x) and
F, (x) respectively.
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Eliminating p and A we can write the previous relations in the form:

In2—2n+1 1 1)y
n(l—n?)e -7 N{ 1 [1+0n(—)]} )
1—n? v

If we assume that the indices of the maximal terms along the curves of
their equivalent values are constant for both kinds of series, as it is shown
by the analysis of the asymptotic region (§§ 2.1—2.2), then we can expect
that » varies from 1 to O for the case of the convergent series, and from 0 to 1
for the case of the asymptotic expansions when v takes the values from 0 to
infinity respectively. Consequently, the intersections of the curves of these two
families can be expected in the interval » & (0, 1).

On the other hand, having in mind that the asymptotic functions of the
maximal terms of both series are functions of the same form and the same
arguments (§§ 2.1—2.2), we can reduce the mutual equality of the maximal
terms of these series to the equality of relevant arguments, i.e. of their indices
w and A (§§ 2.1—2.2):

7’ 11—

Vl—nz l+y’
implying %=1/2.
Although the result is approximate, as it is concerned with mutual inter-
sections of the considered families of curves in the region adjacent to the
asymptotic one, it points to the existence of the solution %=£0.1.

Therefore, the asymptotic locus of equal maximal terms of the convergent
series E, (x) and the asymptotic expansions F,(x) is a straight line

x=oav+p,
with the slope az%, where 7 is a solution of the transcedent equation
-

3n2—2n+1

n(l—yY)e =7 =1

Solving this equation we obtain n=0.494202620730667 ..., which is in
a good agreement with the approximative solution == 1/2. From this follows
the conclusion about treating of asymptotic relations (§§ 2.1, 2.2) as approxi-
mative relations with a sufficient degree of accuracy, which is of special im-
portance from the point of view of this work.

Substituting the value for v we obtain «=1.30782300122980...

3. NUMERICAL CHECKING OF THE RESULTS

For a prescribed value of the ordcr v(=v,), and under the condition that
the maximal terms of the convergent series E, (x) and the asymptotic expansions
E,(x) are equal, the point (v, x) on thc curve § 2.3 is determined by iteration.
Starting from this point, for the determined value of the maximal terms, the
curves of equivalent values of the maximal terms of the mentioned series are
drawn in the same way (§§ 2.1, 2.2). Simultaneously, along the curves of equi-
valent maximal terms of the asymptotic expansions F,(x) the corresponding
values of the minimal terms are found. The procedure has been repeated in
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several subintervals of the interval v<&[2,1500] with the corresponding incre-
ment Av,

On the basis of the obtained results the following conclusions have been
drawn:

(1) From the points of mutual intersections, the curves of equivalent
maximal terms of the series E,(x) and F,(x) approximate well the correspon-
ding paraboles (§§ 2.1—2.2), and the indices of the maximal terms converge
asymptotically to a constant. With few exceptions for this region, integer va-
lues M=[p] and A =[] along these curves can be regarded as constants.

(2) The amplitudes of the minimal terms fall sharply along the curve
§ 2.2, while the function to (§ 2.2.1) represents a prediction for the exact order
of magniiude of these terms. For the points of mutual intersections (§ 2.3) the
order of magnitude of these terms is 10-v.

(3) The locus of mutually equal maximal terms of the convergent series

Ev(x) and the asymptotic expansions F,(x), (§ 2.3), can be represented by a
damped periodic curve with a decreasing period, and an oscillation axis

x=1.3078230012v + 0.1551,

which, consequently, is the asymptote of the curve § 2.3.

The maximal amplitude of this periodic curve, with respect to the asym-
ptote, is of the order 1072, Its positive slopes are considerably more marked
as a consequence of the discrete values of the index of the maximal terms.

4. DEFINITION OF THE REGION OF LARGE ORDER AND LARGE ARGUMENT

On the basis of the presented analysis which is based on the mutual
dependence of the absolute values of the maximal terms. the speed of conver-
gence of the corresponding series and the error of numerical truncation reduced
during their generation, one can define the region of large order v and large
argument x of BESSEL’s functions as follows:

— 1If the point (v, x) lies under the asymptote of the locus of the mut-
ually equal maximal term of the convergent series and HANKEL’s asymptotic
expansions of BESSEL’s function

x=av+B, @ 2.3),

and if the index of the maximal term of the convergent series
-[5 V)

exceeds the value for which the maximal term corresponds to the permitted
absolute error, or if the point (v, x) lies above the asymptote and the index
of the max1ma1 term of HANKEL’S expansion

A=l x4yt -],

exceed the value for which the maximal term corresponds to the permitted
absolute error, respectivelly, one can say that the point (v, x) is in the region
of large order and large argument. There is no inffuence of the term of mi-
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nimal absolute value of HANKEL’S asympotic expansions in the region of large
order and large argument, (§ 3). .

The families of the curves of equivalent values Cm=e’”/l/2-n:m of the
maximal terms of convergent series and HANKEL’s asymptotic expansions, the
asymptote of their mutual intersections, the position of the points (v, x) in the
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region of asymptotic expansions for which the amplitudes of the minimal terms.
are of the order 107 as well as, the translations of the point A from the
region of large order and large argument if this region is defined by the-curves
C, are shown on Fig. 1. The maximal term of these curves correspond to
an error of numerical truncation of the order 10~ on a hardware format of
36 binary digits.

The results of our analysis are applied to develop a programme for gene-
rating BESSEL’s functions of all four forms in the region of real arguments (v, x).
The results obtained confirmed the validity of the definition of the region of
large order and large argument from the point of view of application of the
elementary series for numerical computations outside the region and for a mo-
dification of the recursive procedure within the region.

The numerical checking of the expounded analysis and the programme for
generating the BESSEL functions were performed on CDC 3600 computer at the
Institute ,,Boris Kidri¢* — Vinca.
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