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1. INTRODUCTION

1.1. This thesis consists of the following parts:

1. Introduction,
2. Polynomial representations of switching functions,
3. Representanions over the field of integers mod p,
4. Representations over the ring of integers mod m,
5. Some unsolved problems and possible generalizations, and
6. References.

1.2. Represen~ations of switching functions over the field J2 of integers mo-
dulo 2 using also operation of complementation are dealt with in Chapter 2.

For the switching function of n variables f (Xl' . . ., xn)=f (X) the Bo-
OLEan difference with respect to a variable Xi is defined in the following way
(see [1, 2, 3])

where f(Xi=C)=f(XI"'" Xi-I' C, Xi+p"', Xn)'
It is shown that the expansion theorem has the following form

or a matrix form

f(X)=111 XiEBqill
!l

lq; qi

llll

f(Xi=O)I

II

,
1 1 f(Xi= 1)

where q; denotes the complement of qi'
Analytical representations of the switching functions which represent ex-

pansion analogous to the TAYLORseries are considered [see 1, 2, 12] and the
name of polarized polynomial forms is used for them. Matri" form of pola-

(1.2.1)

*This paper is part of a doctoral dissertation submitted by Z. Tosic to the Faculty
of Electronic Engineering, University of Nis.
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rized polynomial forms is proved which is derived USing (1.2.1) and is as
follows

f (X) = (Xl X . . . x Xn) (WI X . . . x Wn) Fl.
" n'

where x denotes the left-hand KRONECKERproduct of matrices
the notations are as follows

(see [17]) and

,
f(Xi=O,..., Xj~O, Xk=O) 'I
f (Xi ~ 0, . .. , Xj

= 0, Xk = 1)

Ft. . . jk = .

f(Xi= 1,..., Xj= 1, Xk= 1)

The way of transition from one polarized polynomial form to another
is given.

The results of M. COHN [12, 22] on further generalizations of polarized
poynomial forms, so called nonpolarized polynomial forms, are quoted and
the minimization problem of polarized and nonpolarized polynomial form is
mentioned.

At the end of the Chapter the way of deriving arithmetical representa-
tions of switching functions (see [10]) is shown.

1.3. Representations of p-valued functions over the field of integers modulo p
are considered in Chapter 3.

The expansion theorem by means of the characteristic functions is given
and one of its generalizations is proved. Analytical representations are consi-
dered by means of the spq polynomial form in which the characteristic fun-
ctions are used.

Representations of the p-valued functions by polynomials modulo pare
considered in the second part of the Chapter <:ccording to [12, 19, 24] and
then their generalization as well, which has two matrix forms. The relation
between polynomials and generalized polynomials modulo p is shown.

1.4. Chapter 4 deals with the representations of m-valued functions over Jm'the ring of integers modulo m.
For m-valued functions of one variable, representations of the following

form are investigated

(1.4.1 )
m-l

f(x)= L arhr(x)
r~O

where hr (x) (r = 0, . . . , m - 1) is the system of unary m-valued functions which
is characterized by the matrix

ho(0)

ho(1)

L= .

hi (0)

hi (1)

. .. hm
- 1

(0)

hm-I (1)

ho (m-l) hi (m-l) hm-I (m-l)
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It is proved that the unique representation of the form (1.4.1) exists if
and only if

(1.4.2) (det L, m) = I,

where (a, b) denote the greatest common divisor of the numbers a and b.
The expansion theorem of m-valued functions of n variables by means

of hr (x/) (r = 0, . . . , m - I) functions depending on Xi is derived, and the rep-
resentation

(1.4.3)

is proved,

f(X)=(HI x... x Hn)(WI x... xWn)P1...n

where ~= II ho(x/) ... hm-l (Xi) II, WI = . . . = Wn=L-1 and

1(0,. . . , 0, 0)

1(0... . ,0, 1)
P =1... n

Representations of m-valued
lynomial forms.

In the case when matrix L satisfies (1.4.2) condition for m.valued fun-
ctions of one variable, (1.4.1) representation generalization of the following
form is being proved,

I(m-l,..., m-l)

functions of the (1.4.3) form are called po-

(1.4.4)
m=1

f (x) = 2: ar Xr (xEf) q)
r=O

The relation between representations (1.4.1) and (1.4.4) is shown and
then the generalized expansion theorem is derived by means of which the
following representations of m-valued functions of n variables are proved

(1.4.5)

(1.4.6)

f (X ) = (H" x . . . x H") (W" x . . . x W") P1 n 1 n 1...n'

f (X ) = (H" x . . . x H" ) (w x .. . x W ) P "1 n 1 n 1...n'

where H;=llho(x/+q/) ... hm-J(X/+qi)ll.
Matrices W; (i = I,..., n) in (1.4.5) and (1.4.6) are derived by a cyclic

shift of W matrix columns for qi places to the left and the vector F;..." is
derived by a cyclic shift of the coordinates of PI... n for q places downwards,
where q = ql mn-l + q2mn-2 + . . . + qn (real arithmetic).

Representations (1.4.5) and (1.4.6) are called generalized polynomial
forms.

The second part of Chapter 4 deals with the m-valued functions of one
variable which may be represented by means of polynomials modulo m. The
analogy is then pointed out which exists between the representations of m-va-
lued functions by means of polynomial forms and polynomials modulo p with
FOURIERtransformations as well as the analogy with expansions by orthogo-
nal functions. At the end, it is proved that the polynomial forms considered
may also be derived in whatever commutative ring with a unity. It is a con-
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dition there .that the determinant of matrix L be an element of the ring which
is invertible with respect to the multiplication operation in the ring.

1.5. In Chapter 5 some unsolved problems are pointed out as well as possible
furth.er uses of polynomial forms.

1.6. References quoted in Chapter 6 cover the literature used during the work
on this thesis.

*
* *

Particularthartks are due to Professor dr. D. A. POSPELOVwho has intro-
dused the author of,;this thesis into scientific work and under whose guidance
at the Department for Computing Technique of the Moscow Power Institute
most of the results have been obtained.

The author is grateful to Professor dr D. S. MITRINOVICfor his idea of
writing his thesis, and for his great support and permanent interest during the
work on the text.

Many thanks are also due to Professor dr. R. Z. f)ORDEVICfor his cordi-
al and unselfish help. in writing the thesis.

2. POLYNOMIAL REPRESENTATIONS OF SWITCHING FUNCTIONS

2.1. Boolean difference

Let us denote the field of integers modulo 2 by J2. Functions defined
over J2 taking val~es from J2 will be called switching functions.

Addition over J2 will be denoted by EB and multiplication by . or by
juxtaposition of factors.

The switching function or (disjunction) will be denoted V, while x V y =
= x EBY EBxy. The u.nary switching function of complementation will be deno-
ted by either 1 EB x or x'.

Addition and subtraction over the field of real numbers will be as usu-
ally denoted by + and -, respectively.

Let a switching function f (X) = f (xl' . . . , xn) be given. The BooLEan
difference 'of f (X) with respect to the variable Xi (i E {I, . . . , n}) is defined by
the, expression

(2.1.1 )

where ['(Xi = c) = f(xp . . . , Xi-I' C, Xi+l' . . . , xn).
The BOOLEan difference has ben introduced by S. B. AKERS [1] who has

considered in detail the characteristics and applications of this operator. A few
years later, independently of S. B. AKERS, the same operator was introduced
by R. D. BOCHMANN[2].

S.B. AKERS proved that, equivalently to (2.1.1), the BOOLEan difference
may also be defined as follows

(2.1.2)
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The BOOLEan difference defined that way had been used before S. B.
AKERS by I. S. REED [3] in reference with the error correcting codes.

The BooLEan difference of higher degree is inductively defined as follows

(2.1.3) Dj...jk 1 (X) = Dk [Dj...j 1 (X)].

Let us mention that, in reference with some technical applications, anot-
her definition of BooLEan difference of higher degree is considered [.1, 5,6],

D;.. 'kICX)=/(Xj,...,Xb Xk+p"', Xn) EB/(x;,..
"

X~, Xk+1"'" xn).

This operator will not be considered further.
Some characteristics of the BooLEan difference will be mentionedwitho-

ut proofs. Proofs can be found in references [1, 2, 4, 5].

DjC=O (C constant), D;f'(X)=D;f(X),

Dij/(X)=Dj;f(X), Djj/(X)=O,

D;[I(X) EBg (X)] = D;f(X) EBDjg(X) . ,.

Dj [/(X)g(X)] =/(X) Djg(X) EBg(X)D;f(X) EBD;f(X) Djg(X),

D;[I(X) V g(X)] = f' (X) Djg(X) EBg' (X) D;f(X) EBDj I(X)Djg(X),

DJ [g(X)] = DgI(g)Djg(X),

where Dg 1 (g) is the BooLEan difference of the function 1 (g) with respect to
the variable g.

Some works in which operators equivalent to the BooLEan difference are
ntroduced and used can also be found in literature. .

In reference with the synthesis of the majority switching functions by
means of be cascade method, the BOOLEan difference is introduced in [8],
which is equivalent to the expression (2.1.1) and is used for determination of
the sequence of the variables by means of which the expansion is being per-
formed.

An operator equivalent to the BooLEan difference defined by expression
(2.1.2) is introduced into the works [4, 5, 9] and is used for diagnosis of the
switching circuits.

[f a switching function is interpolated by a polynomial whose variables
take their values from the set {O, I}, that polynomial will be called the arith-
metical representation of the given switching function. In this case the BOOLEan
difference can be introduced in the following way as well .

(2.1.5)

The expression is derived from the well known general definition of the
finite difference.

For the sake of analysis of the switching functions behaviour when the
variable Xj changes, R. D. BOCHMANN[2, 6] introduced into consideration the
so salled directed BooLEan differences.

Let a switching function of n variables 1 (X) = 1 (xl' . . . , Xj, . . . , xn) be
gIVen.
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The switching function which equals 1 if and only if with the change of
the variable Xi from 0 to I, f (X) also changes from 0 to 1, is called the BOOLEan
difference in the forward direction with respect to the variable Xi' and is defi-
ned by the expression

(2.1.6)

The switching function which equals 1 if and only if with the change
of the variable Xi from 0 to 1, f (X) changes from 1 to 0, is called the Bo-
OLEan difference in the opposite direction whh respect to the variable Xi' and
is defined by the expression

(2.1.7)

The following relations between the BooLEan difference and the directed
BooLEan differences hold (see [2])

DJ(X)=Df f(X) EB Dff(X)=Df f(X)V Dff(X),

D1 f(X)=f(xj= I)D;/(X), Dff(X)=f(xj= O)D;/(X).

2.2. Expansion theorem

Any swiching function can be represented in the following way (see [1])

(2.2.1) f(X)=x;f(Xi=O)EBX;/(Xi=I).

The representation (2.2.1) is called the expansion theorem of the func-
tion f(X) with respect to the variable Xi' It is proved by replacing for Xi va-
lues of 0 and 1.

The expansion theorem is analogous to the corresponding theorem of
C. E. SHANNON[11].

l. S. REED in [3] proved that the set of all switching functions of n
variables form 2n-dimensional vector space over the field J2. Such a conside-
ration of the set of the switching functions will further be used very often
for their representations. Matrices and vectors over J2 will be denoted by Latin
capitals. All the operations with the matrices over J2 are analogous to the
corresponding operations over the field of real numbers.

The expression for the expansion theorem (2.2.1) in the matrix form is
as follows

(2.2.2) f(X) = II x; Xi
II11~ ~ IIII~~:::~~ II.

If replacing of x;= 1 EBXj and Xj= I EBx;, reprectively, is performed in
(2.2.1), two forms of the expansion theorem will be derived (see [12, 13])

(2.2.3) f(X)=f(Xi=qi)EB(XiEBqi)DJ(X) (qi=O,I).

The corresponding matrix expression for (2.2.3) will be (see [15])

(2.2.4) f(X) = 111
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In transition .from (2.2.3) to (2.2.4) the equation f(Xi=qi)=q;f(xj=Offi
(J?)q,/(Xj= 1) is used which is derived from (2.2.1).

Using all these tree forms of the expansion theorem, synthesis of the swit-
ching functions by means of so called cascade method of G. N. POVAROV[14]
may be carried out with the elements which realize the sum and product func-
tions modulo 2 [13].

Let the function f[g (X)] be a composition function. Using (2.2.3) the
expansion of f(g) by g and then of g(X) by x is done by

f[g (X)] = f(g = q) ffi [g (Xj= qi) (J?)(xiffi qi) Dig (X) ffi q] Dg f(g)

=f(g = 0) ffig (Xj = qj) Dgf(g) ffi (xiffi qj) D,/[g (X)].

The expression (2.2.5) represents the expansion theorem of the compo-
sition function.

(2.2.5)

2.3. Basic polynomial representations

Representations of the switching functions over the field Jz, using, besides
the field operations and constants 0, 1, the unary operation of complementation
as well, will be called polynomial forms. A particular case of the polynomial
forms are representations by the polynomials modulo 2.

Let O;;;;,j;;;;,2n-l and

(2.3.1) j=jn2n-'+jn-,2n-z+. . . +jz2+j,

be the representation of the number j over the dyadic number system.
Let us put the following functions into the on.;-to-one correspodence to j

(2.3.2)

(2.3.3) rj (X) =.n Xj'
1j=1

(2.3.4)

ro (X) = r~ (X) = 1,

( .) ( . ) . ( . ) ( . )
{
i, jj = 1,

C i = C h ... C in, C it = .
-0, ];-0,

where 0 denotes the empty set.
Using the definitions introduced above, the expanSIOn theorem (2.2.3)

can be represented in the following form

(2.3.5) f(X) = Dof(xj= qj) ffi (xjffiqj) D,/(xj= qj)

= r~ (X) Dc<o)f{xj = q.) ffi r;i (X) D C(2i/(Xj = qj),

where Dof(X) = f(X).
As Xj is a dummy variable (see [1]) for the BooLEan difference DJ(X)

the equation DJ(X) = DJ(Xi = qj) has been med.
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Every switching
(see [1, 12])

(2.3.6)

function may be represented in the following form

2n-1
f(X) = 0L Pj(X)f(j),

j~O

where f(j) = fUi' . . . , jn) and 0 ~ denotes addition modulo 2.
The representation (2.3.6) will be called the full polynomial normal

form. It is analogous to the full disjunctive normal form.
By mathematical induction it is proved that every ~witching function has

the following representation (see [1, 2])
2n-1

*f(X) 0:= 0 L rj (X) Dc(j)f(qp . . . , qn) (qi E Jz).
j=O

(2.3.7)

This representation is derived by the application of the expansion theorem
(2.3.5).

The representation of the form (2.3.7) will be called the polarized poly-
nomial form. As the values of qi (i = 1, . . . , n) can be taken optionally there
are 2n polarized polynomial forms for every switching function of n variables.
Their characteristic is that the same variable within them can only be either
complemented or uncomplemented.

The polynomial forms (2.3.7) are analogous to the expansion of analy-
tical functions into the TAYLORseries and that is why S. B. AKERS has used
in [1] the term "series expansion" for them.

As a particular case of the representations (2.3.7) polynomials modulo 2
are obtained if qj=O(i=I,..., n) is put,

(2.3.8)
2n-1

f(X) = 0 L rj (X) De(j) f(O,. . . , 0).
j~O

The possibility of using polynomials modulo 2 for representation of
switching functions was proved in 1927 by 1. I. ZEGALKIN[16]. The represen-
tation (2.3.8) has been proved by r. S. REED [3] and D. E. MULLER [28].

The above considered representations may be very suitably expressed by
matrices [12]. The expression (2.2.4) can be written in the following may

(2.3.9)

Theorem 2.1. Every switching function of n variables is representable in the form

(2.3.10)

PROOF. The proof is by induction on n. For n = 1 (2.3.10) holds good
by (2.3.9). Let us assume that the Theorem 2.1 holds for n-l and let us
prove that it holds for n too.

By the expansion of the function f(X) with respect to the variable xn
on the basis of (2.3.9) we have

(2.3.11)
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For the induction step the switching functions f(xn= 0) and f(x= 1)
in Fn can be written in the following way

(2.3.12)

where Y = Xl X . . . XXn-I' W = WI X . . . X Wn-l' and FO and FI are vectors,
derived from the vector Fl'" n-l by replacing in all its elements the variable xn
by values 0 and 1, respectively.

Replacing (2.3.12) into (2.3.11) we have

f(X) = 111 xn~ qn 111/:: :n
/11/ ~:;: II

= II Y y. (xn~qn)
II11 q: ~WIIII;: II

= (Xl x ... xXn)(WI X... xWn)FI...n,
hence Theorem 2.1 is proved.

The representation (2.3.10) is a matrix form for the polarized poly-
nomial forms and is identical to (2.3.7).

The matrix form for the polynomials modulo 2 is derived as a particular
case of (2.3.10) ifq;=O is put for all i=I,...,n. ThenWI=...=Wn.Such
mode of representation has ben considered by many authors [12, 18, 19, 20]
and it should be particularly pointed out that the matrix WI x . . . X Wn can
be derived from the matrix of binomial coefficients modulo 2 (see [19. 20]).

2.4. Generalized polynomial forms

As it is said in the preceding text, the characteristic of the polarized poly-
nomial forms is that the same variable in all their elements may be either
complemented or uncomplemented. However, M. COHN has proved in [12, 22]
that there are more gener81 polynomial forms by means of which swicching
functions can be represented.

If the set of all switching functions of n variables is considered as a
2n-dimensional ve.::tor space over J2 then bases of the vector space consist of
the following vector systems in the representations (2.3.6) and (2.3.7), res-
pectively

(2.4.1 )

(2.4.2)

pj (X)

r~ (X)
J

(j= 0,..., 2n-I),

(j= 0,..., 2n-l).

The basis (2.4.1) is orthogonal. There are 2n bases of the form (2.4.2)
in all and they consist of vectors

(2.4.3 )

were for all i (i= 1,..., n)x;=x; or x;=x;.

For deriving polynomials modulo 2, the basis consists of the vectors

(2.4.4)
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All basis vectors of the system (2.4.3) may be derived from the vector
system (2.2.4) if a certain number of variables are complemented in all
vectors.

The matrix composed of the coordinates of the vector system (2.4.3)
may be represented as the KRONECKERproduct of matrices of order two which
can be seen from (2.3.10).

M. COHN has shown that if variables are complemented optionally in
each of the vectors of the system (2.4.4), a new basis will be derived. Switching
functions representations by means of that new basis represent generalisaiion
of the polarized polynomial forms and they will be called nonpolarized poly-
nomial forms.

The matrix composed of the coordinates of the basis vectors of the non-
polarized polynomial forms can no more be represented as the KRONECKER
product of the matrices of the order two (see [12]).

Total number of the nonpolarized polynomial forms for the switching
functions of n variables equals 2K [22], where K = 2n2n-l. However, there are
only 2n bases among them which are polarized polynomial forms.

The problem of obtaining the minimum number of realizations is true
for the polynomial forms as well. Althoungh there are a lot of works dealing
with the minimization of the polynomial forms so far there is no a method
which could find wide application in practice. Besides the generalization of the
well known classical minimization methods, specific ones are being developed
for minimization of the polynomial forms dealing with the characteristics of
the considered set of functions (see works [7, 12, 13, 23-31] on the mini-
mization of polynomial forms).

2.5. Arithmetical representations

For the sake of the switching functions representation any of the inter-
polatIon methods (see [32]) may also be used, the values of the variables being
taken from the set {O, I}.

A more general approach to the switching functions representation by
means of the arithmetical operations will be considered here [10]. These repre-
sentations will be called ari",hmetical representations in order to distinguish
them from the representations over J2.

It should be mentioned first that the unary switching function comple-
ment has the following arithmetical representation: x' = 1 - x.

Let us consider under which conditions each switching function of one
variable has representation of the form

(2.5.1) f(x) = 00ho(x) + 01hI (x),

where x E {O, I}, 00 and al are integer coefficients while ho(x) and hI (x) are
the switching functions of one variable.

Replacing the values x=o and x= 1 into (2.5.1) the following system of
equations is derived

(2.5.2) (k=O, 1).
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In order that an integer solution should exist for ao and aI, it is ne-
cessary and sufficient that the determinant of the system (2.5.2) has the va-
lue + I or -- 1. Since there are only four switching functions of one variable,
investigating all the possible cases it is easily determined that the system (2.5.2)
is satisfied by the following three sets (solutions obtained by a mere replacing of
indexes are considered as one) and the same:

1)

2)

3)

ho(x) = x',

ho(x)= 1,

ho(x) = x',

hI (x)=x;

hI (x) = x;

hI (X) = 1.

For these three systems of functions each switching function of n varIa-
bles will have the following three expansions

(2.5.3) J(X)=X;J(Xj=O)+XJ(Xj= 1)

=J(Xj= 0) +xjDJ(X)

=J(Xj= 1)-x;DJ(X),

where DJ(X) is defined by (2.2.5).
Let us denote

HJ=IIX; Xjll,

The matrix form of the expansion (2.5.3) will be as follows

(2.5'2) (U= 1, 2, 3).

In the same way as with the Theorem 2.1, it may be proved that each
switching function of n variables has the following representation

(2.5.2) f( X ) = (HU1X ... x HUn) (RU1x ... x Run) F1 n 1 n I...n (UjE{I, 2, 3}).

Arithmetical representations are used in 0 - 1 integer linear program-
ming [33, 34]. In addition, transition from arithmetical representations to
polynomial forms is bdng done by replacing the coefficients a/ (j = 0, . . . , 2"- 1)
by their values modulo 2.

3. REPRESENTATIONS OVER THE FIELD OF INTEGERS mod p

3.1. Notations and introductory notes

Let Jp denote the field of integers mod p, p a prime. Functions defined
over Jp with the values from Jp will be called p-valued functions. Besides
this term, terms p-valued switching functions or p-valued logical functions may
be found in literature.
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Addition over the field Jp will be denoted by + and multiplication
by . or by juxtaposition of factors. The inver<;e element to the element t E Jp
with respect to the operation + will be denoted - t.

The term polynomials modulo p will be used in the usual <;ense. These
polynomials will be considered below and used for representation of p-valued
functions. In comparison to the representations by means of other complete
sets of p-valued functions, polynomials modulo p have some advantages which
are as follows:

- similarity to the ordinary algebra which facilitates work on synthesis
and simplification of the circuics (see [35, 36]),

- in comparison to other complete sets, the set consider~d provides
more economical realizations (see [35]).

Except for the representation of p-valued functions, polynomials modulo p
are used in the theory of error correcting codes (see [37, 40]), theory of
linear sequential switching circuits (see [39, 40]), etc. By means of polynomials
over the field GF(2n) a number of digital proccesses such as the Identification
of twotone patterns, the decoding of binary block codes, the addressing of
"files" in the memory of a computer, etc. may be described (see [41, 42]).

3.2. spg polynomial forms

The functions of the forms to follow will be called the characteristic
p-valued functions of one variable

gr(X)=
{

1, x=r

0, x=/=r
(3.2.1 ) (r=O, ... ,p-l).

The following theorem will be proved.

Theorem 3.1. All characteristic functions of one variable can be expressed by
means of the given characteristic function g, (x) (t E Jp) in the following way

(3.2.2) gr(x)=g,(x+t-r) (r=O,... ,p-l).

Proof. For x=r we have gr(r)=g,(r+t-r)=g,(t)=1. For x=rl=/=rwe
have rl +t-r=/=t, and then gr(r)=g,(rl +t-r)=O. Thus Theorem 3.1 has
been proved.

The characteristic functions (3.2.1) have the following polynomial repre-
sentation (see [36])

(3.2.3) go(x)=(p-l)xrl+ 1,
p-2

gr(x)=(p-l) L:
rkxp-I-k (r=l,

'"

,p-l)
k=O

or in a general form (see [19])

(3.2.4)
p-I

gr(x)=l+(p-l) L:
rkxp-I-k (r=O,... ,p-l).

k~O

Theorem 4.2. (M. J. GAZALE [19], D. A. POSPELOV[7]). Any p-valued function
of,n variables has a representation of the form

(3.2.5)
_I

f(X) = 2. f(x; = r) gr (x;).
r~O
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The expression (3.2.5) will be called the expansion theorem of the p-va-
lued functions for the characteristic functions of the variable Xi'

As a generalization of theorem 3.2, the following theorem will be proved.

Theorem 3.3. Every p-valued function of n variables has a representation of the
form

(3.2.6)
p-I

f(X)= L f(xi=r-q)gr(Xj+q)
r=O

Proof. For every value of xi = t (t E Jp) on the right-hand side of the
equation (3.2.6) only one characteristic function will get the value 1. That
will be for r=t+q and then (3.2.6) yields f(xj=t)=f(x,=t+q-q)gr(r)=
=f(xi = t), hence Theorem 3.3 is proved.

Representation (3.2.6) will be called the generalized expansion theorem
for the characteristic functions of the variable Xi'

Let 0 ~ r ~pn-1 and let

(3.2.7)

be the representation of the number r over the p-adic number system (real
arithmetic).

The characteristic functions of the p-valued functions of n variables are
defined in the following may

gr (xl' . . . , xn) =
{

1, (Xt,..., xn) = (rl' . . . , rn),

0, (XI"'.' xnh.!:(rp..., rn),
(3.2.8)

where the relation

(3.2.9)

holds (see [7, 19, 36]).

Theorem 3.5. (see [19]). Every p-valued function of n variacles has the represen-
tation of the form

(3.2.10)
p-I

f(xl"'" xJ= L f(rp..., rn)grl (Xt)' . .grn(xn)'
r=O

Representation (3.2.10) will be called the spg polynomial form. A gene-
ralization of the preceding theorem is provided by the following theorem.

Theorem 3.5. Every switching p-valued function of n variables has a representa-
tion of the form

pn-I
(3.2.11) f(xi"",xn)= 2: f(rt-qi,...,rn-qJgr,(Xt+qi)" .grn (xn+ qn)

r=O
(qjEJp).

Proof. The proof is by mathematical induction on n. For n = 1 the theo-
rem holds by (3.2.6). Assume that the theorem holds for n - 1, and let us
prove that the theorem will also hold for n.
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According to the inductive assumption it is true that

pn-I-l
f(X)= L f(rl-qp..., rn-I-qn-l> xn)grl (XI +ql)' . .grn(Xn-I +qn-I)'

r=O

By the application of (3.2.6) we have now

pn-I-l
f(X) = L grl (Xl + ql)' . . grn (Xn-I + qn-I)

r=O
p-l

X L f(rl-ql"'" rn-qn)'grn(Xn+qn)
rn=O

pn-l

= L f(rl-qp..., rn-qn)grt(XI+ql)" .grn(Xn+qn)'
r=O

which completes the proof.

The representation (3.2.11) will be called spg generalized polynomial form.

Put GI=llgo(xl) ... gp-I (XI) II, G;=llgo(xl+ql)
'"

gp-I (xl+ql) II,

f(x;~O,..., Xj=O, Xk=O)

f(x;=O,..., Xj=O, Xk= I)

f(x;=p-I,..., xk=p-I)

Let q = qlpn-l + q2pn-2 + . . . + qn (real arithmetic) be the number which
is put into the one-to-one correspondence to the vector Q = (qp . . . , qn)' If the
identity matrix of order pn is denoted by I, then the expansion theorem (3.2.5)
will have the following matrix form

(3.2.12)

Let 1* be the matrix which is derived by the cyclic shift of the rows of
the matrix I for q places to left and F;... jk the vector which is derived by
the cyclic shift of the Fl'" jk vector coordinates for q places downwards. The
generalized expansion theorem (3.2.6) then has the matrix form

(3.2.13) f(X) = G; IF; = G; 1* Fl'

The corresponding matrix expressions can also be written for the spg
polynomial form (3.2.10) and the generalized polynomial form (3.2.11).

3.3. Polynomials mod p

It is known (see [53, 54]) that everyone-variable p-valued function may
be represented by the polynomial

(3.3.1 )
p-l

f(x) = L arxr,
r=O



The matrix V-I has the form (see [19, 43, 44, 46])

o 0 0

o -1-1 -2-1 -(p-l)-I

V-I= 0 -1-2 -2-2 -(p-l)-2

Analytical representations of m-valued logical functions ... 15

where (see [19])

(3.3.2)
p-I

a,= 2, f(k)(l-rP-I-kP-I-') (r=O... p-1).
k=O

Theorem 3.6.
form

(3.3.3)

Every p-valued function of n variables has a representation of the

p-I p-I
f(X)= 2, Xi 2, f(Xi=k)(l-rP-I-kP-I-').

r~O k~O

Proof. Let us investigate a representation of the from

p-I
f(X)= 2, x~a,(xl' ... , Xi-I' Xi+J' ... , xn).

r=O
(3.3.4)

Replacing for the variable Xi the values 0, . . . , p - 1 into (3.3.4) the
following system of congruences will be obtained

(3.3.5)
p-I

f(k) = 2, krar (xl' . . .
r=O

(k=O, ... ,p-l).

The matrix of this system has the from

o o o1

1

1V= 2 22

1 p-l (p-l)2 (p-l)P-1
I

The determinant of the matrix V is known as VANDERMONDE'Sdetermi-
nant whose value is det V=1!2!.. .(p-1)!.

If we denote Hi= 111 Xi ... xf-III, Fr = Ilf(Xi= 0) .., f(Xi=P-1)11,

Ai = Ilao(XI"'" Xi-I' Xi+1"'" Xn) ... ap-l (Xl"'" Xi-I' Xi+1"'" xn)11

then the system (3.3.9) will have the matrix from VAi= Fifrom which it follows

(3.3.6) Ai=V-IFi.

o -1-(p-2)-2-(p-2) -(p_l)-(p-2)

p-l -1-(p-l) -2-(p-i) -(p-l)-(p-I)

The elements Wrk(r, k = 0, . . . , p - 1) of the matrix V-I may be expressed
the following way (see [19])III

(3.3.7)
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The matrix form for (3.3.4) is f(X)=HjAj from which replacing Aj
from (3.3.6) will be derived (3.3.3), that is, the matrix from

(3.3.8) f(X) = HjV-1Fj.

The representation (3.3.8) (or (3.3.3») will be called the expansion
theorem of p-valued functions of n variables about the variable Xj'

Starting from (3.3.8) we will prove by mathematical induction the exi-
stence of the following representation (see [19, 22]).

Theorem 3.7.
the form

(3.3.9)

Every p-valued function of n variables has a representatinn of

f( X ) = (H x .. . x H ) (Vii X . . . x V;l ) F1 n 1... n'

where Vii = . . . = v;l = V-I. The left-hand Kronecker product of matrices is
denoted by x.

Proof. The proof is by induction on n. For n = 1 the theorem holds
by (3.3.8). Assume that the theorem holds for n - 1, and let us prove that it
will then also hold for n.

By the expansion of the function f(X) about the variable xn from (3.3.8)
we will have
(3.3.10) f(X) = HnV-1Fn.

All the coordinates of the vector Fn are functions of n - 1 variable.
According to the induction assumption every of those coordinates has the
representation of the form (3.3.9)

(3.3.11)

where Y = H x . . . x H W = V1
-1 X . . . XV-I I = V-I X . . . XV -I and where

1 n-l' n-
it has been denoted by Fl... n-1 (Xn= k) that the variable Xn in all cooroinates
of the vector Fl... n-1 should be replaced by k.

By the expansion of (3.3.10) and replacement of f(xn = k) according
to (3.3.11), it follows:

p-1 p-1 p-1 p-I
f(X)= 2: 2: x~wrd(xn=k)= 2: 2: x~WrdYWF1...n-1(Xn=k)]

r=O k=O r~O k=O

p-I p-1

= 2: .L (x~Y) (wrkW)F1... n-1 (xn = k) = (Y x Hj)(W X V-1)F1... n
r~O k~O

and (3.3.9) follows immediately.

3.4. Generalized polynomials mod p

A generalization of the following form may be considered
nomia1s (3.3.1)

for the poly-

(3.4.1 )
p-1

f(x) = 2: ar(x+q)' (qEJp)'
r~O

First, the following lemma will be proved.



o
'"

0 1 0 ... 0
I

P=
0 0 0 1 0

q

0 1 0 0 0

Analytical representations of m-valued logical functions... 17

Let L be a square nonsingular matrix of the order p over Jp and let L-1
'Qe its inverse matrix. The matrix which is obtained from the matrix L by
the cyclic shift of the rows for q places upwards (q<p) will be denoted by Lq.

Lemma. The inverse matrix L;;t of the matrix Lq is derived from the inverse
matrix L -1 by the cyclic shift of the columns for q places to the left.

Proof. Let Pq be the following permutation matrix of the order p
q

It is easy to establish that the inverse matrix of P q will be the following
permutation matrix

p-q

0...010...0

P -l-q -
o o 0 1 o

o 1 0 0 o

Cyclic shift of the rows of the matrix M of order p for q places upwards
is performed by multiplying from the left-hand side by the permutation matrix Pq.
The cyclic shift of the columns of the matrix M for q places to the left is
performed by multiplying from the righthand side by the matrix p;;1 (see [46]).

The equation (L-1 p;;l) (PqL)=1 follows from the equation L-1L=I, and
the proof of the lemma follows immediately.

Replacing the values for x in (3.3.1), the following system of congruen-
ces is oatained.

(3.4.2)
p-l

2: ar(k+qY=f(k)
r~O

(k=O ...,p-l),

or in the matrix form V* A = F, where

1 q q2

1 (1 +q) (1 + q)2

qP-l

(1 +q)P-l

V*=

1 (q-l) (q-l)2 (q-l)P-l

It is seen that the matrix V* is derived from the matrix V of the sys-
tem (3.3.5) by the cyslic shift of the rows for q pbces upwards.

By the proved lemma the inverse matrix of the matrix V* exists and is
derived from the inverse matrix V-I by the cyclic shift of the columns for q
places to the left. From (3.3.7) then follows that

(3.4.3)

2 Publikacije
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If we put (V*r1 = W* then the matrix form of the representation (3.4.1)
will be as follows

(3.4.4) f(x) = H* W* F,

where H*=111 x+q .., (x+q)r111.
The system (3.4.2) can be represented in other form

p-l

.L arkr = f(k - q)

r=O
(k=O,...,p-l),

and its matrix form will be VA = F*, where F* is derived from the vector F by
the cyclic shift of the coordinates for q places downwards. From this one more
matrix form for the representation (3.4.1) is derived

(3.4.5) f(x)=H* WF*.

(3.4.1) in expansion form will be written using (3.4.4)The representation
and (3.4.3)

(3.4.6)
p-l p-l

f(x)= L (x+q)' .Lf(k)[l-rrl_(k-q)P-l-r].
r=O k~O

The representation of the form (3.4.6) will be called a generalized poly-
nomial modulo p.

Analogous relations hold for the generalized polynomials of n variables
as well as for the polynomials modulo p. They will be mentioned here witbout
proofs since they are performed in the same way.

Theorem 3.8. Every p-valued function of n variables has a representation of the
form

(3.4.7)
p-l p-l

f(X)= L (Xi+qi)' L f(xi=k)[l-rrl_(k-q)rl-r].
r=O k~O

The representation (3.4.7) will be called the expansion theorem of p-va-
lued functions about powers (Xi + qi)' (r = 0, . . . , p - 1).

Theorem 3.9. Every p-valued function of n variables has a representation of the
form

(3.4.8)

(3.4.9)

f( X ) = (H* x . . . x H*) (W* x . . . x W*) F1 n 1 n l...n'

f(X)= ( H* x . .. X H*) (W1 X ... xWn)F* .1 n 1... n

Matrix forms of the generalized polynomials modulo p are given by
(3.4.8) and (3.4.9). These polynomials are generalizations of the polarized
polynomial forms over the field J2. Therefore they can also be called pola-
rized polynomials mod p unlike the polynomials mod p of more general form
which will be considered later.

The possibility of representing p-valued functinns by the generalized
polynomials has been proved by M. COHN [46] and they were called T-forms
because they are analogous to the expansion of the polynomials into the TAYLOR
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series. Then the representations by polynomials mod p correspond to the expansion
into the MACLAURINseries. These representations are called M-forms by M.COHN.

There are polynomials of more general form than the generalized (polarized')
polynomials. An example of the polynomials generalization (3.3.1) is represented
by the polynomials

P-l
f(x)=ao+ L ar.(x+qrl)" .(x+qrr) (qrjEJp).

r=1

(3.4.10)

Generalization for the p-valued functions of n variables can be performed
in the same way. Namely, considering the set of these functions as the
pn-dimensional vector space over the field Jp from (3.3.9) it is seen that for
polynomials the basis consists of the system of vectors

(3.4.11 )
,

If the power (Xi + q;)Si(Xi+ qi)Si-si (s;<s) is taken instead of the power

x? in (3.4.11) a new basis is derived. This is the consequence of the theorem
of M. COHN [12] which is as follows:

Theorem 3.10. Every generalized basis is the basis of the vector space which
consists of the p-valued functions of one variable.

As a generalized basis in the Theorem 3.10 the system of vectors
hr(x) (r = 0, . . . ,p - 1) is considered of such a kind that each of them is
represented by the polynomial mod p of the form (3.3.1) whose power equals r.

4. REPRESENTATIONS OVER THE RING OF INTEGERS mod m

4.1. sph polynomial forms

Let Jm be the ring of integers modulo m. Functions defined over Jm by
the values from Jm will be called m-valued functions.

Addition over the ring Jm will by denoted bu + and multiplication by.
or with juxtaposition of factors.

An inverse element to the element t E Jm will be denoted by - t.
It is known that (see [53, 54]) for the case of the ring Jm all m-valued

functions cannot be represented by the polynomials, for the operations + and.
together with the constants O,...,m - 1 do not form a complete set. In this
chapter it will be shown that by adding of certain numbers of unary functions
to the above mentioned set of functions a complete set of functions is derived
and the representations of m-valued functions with that complete set will
be given.

All the theorems on the representations of the p-valued functions by
means of the characteristic functions, which were proved in the preceding
chapter for the field Jp, are also proved in the same way for the ring Jm.
That is why all the considerations from 3.1 are completely transfered here
as well, replacing p by m. Further generalization is given below.

2*
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Let ho(x),. . ., hm-l (x) be a certain defined system of m-valued functions
of one variable. Let us investigate the conditions which should be satisfied by
this system so that any m-valued function of one variable could have the
representation of the form

(4.1.1 )
m-t

f(x) = I arhr(x)
r=O

Put AT = II ao,. .. ,am-tll, FT= Ilf(O), . .. ,f(m - I) II, H = Ilho (x),.. . ,hm-t(x)ll.
Then (4.1.1) has the following matrix form

(4.1.2) f(x)=HA.

Replacing the values for the variable x in (4.1.1), the following system
of congruences is derived

(4.1.3)
m-l

I arhr(k) = f(k)
r=O

(k = 0,. . ., m -1),

or in matrix form

(4.1.4) LA=F,

where L is the matrix of the system, that is

ho(O) hi (0) ... hm-I (0)

ho(1) h, (1) hm-I (1)
L=

ho(m-1) hI (m-1)

The following theorem will be proved.

Theorem 4.1. Necessary and sufficient condition
representation of the form (4.1.1) is

(4.1.5) (det L, m)= 1.

hm-, (m-1)

of the existence of the unique

Proof. The system (4.1.3) may be written in the following form (see [47]
~ ar= ~r (r = 0, . . . , m - 1), where ~ = det L and ~r is derived replacing in the
r-th column by the column of the function value.

In order that a unique solution for ar would exist it is necessary and
sufficient that (~) m) = 1 (see [49]). This completes the theorem.

Represeotations of m-valued functions of the form (4.1.1) will be called
polynomial forms mod m (or in short: polynomial forms).

Polynomial forms may be considered as a generalization of polynomials
which were previously considered in the same sense as was the case with the
representations of the functions over the field of real numbers by means of
the system of orthogonal functions (see [48]).

By Teorem 4.1 it was proved that, by adding m unary functions to the
operations +, . and the constants 0, .. . , m -.1, representations of m-valued
functions of one variable are obtained. It will now be proved that thus a
complete set of m-valued functions is obtained.
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Let ho(x) = go (x). According to Theorems 3.1 and 4.1 it follows that
it is sufficient to add only one unary function to get, in a case of a nonprime
nunber m, a complete set of m-valued functions which consists of +, .
(mod m) the constants 0,..., m - 1 and go (x). The matrix L in the given
case is an identity matrix I of the order m. In general, if the matrix L is
circulant the same case will follow.

The question arises how many different possible sets of functions
hr(x) (r = 0, . . . , m - 1) for the given m satisfy the condition of Theorem 4.1.
That condition is reduced to the investigation of matrices whose determinant
is relatively prime to m. For the sake of der!ving a solution, the total number
of such matrices should be divided by m!, for matrices obtained from each
other by permutations of columns are considered as one and the same solution.

The number of square matrices of order m whose determinant mod m
is relatively prime to m is determined in references [50, 51].

From the condition (det L, m) = 1 it follows that the matrix L will have
an inverse matrix L -I = W. Then from (4.1.1) it follows that A = WF. Repla-
cing in (4.1.2) we will have

(4.1.6) f(x) = HWF.

If Wrk(r, k = 0, . . . , m - 1) are the elements
(4.1.6) it follows that

(4.1.7)

of the matrix W then from

m-I m-l
f(x) = 2 hr (x) 2 wrkf(k).

r = 0 k=O

Let f(X) be an m-valued function of n variables. If we denote

Fi=llf(xj=O) ... f(xj=m-l)11

then, performing the same procedure as while proving the representations
(4.1.6) and (4.1.7), respectively, the following theorem is proved.

Theorem 4.2. Every m-valued function of n variables has a representation of
the from
(4.1.8)
or

(4.1.9)
m-l m-l

f(X) = 2 hr (Xi) 2 w,kf(Xi = k).
r = 0 k=O

The representations (4.1.8) and (4.1.9), respectively, will be caIled the
expansion theorem of the m-valued functions of n variables about the functi-
ons hr (Xi) (r = 0, . . . , m - 1) of the variable Xi'

Starting from (4.1.8) by mathematical induction method in the same
way as in the proof of the Theorem 3.7 of the preceding chapter, the foIIo-
w:ng theorem is proved.

Theorem 4.3. Every m-valued function of n variables has a representation of
the form
(4.1.1 0)

where WI= . . . = Wn= W.
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The representations (4.1.10) will be called the polynomial forms for
tn-valued functions of n variables.

4.2. Generalized polynomial forms

The polynomial forms from the preceding passage will be generalized
in the following way. Let us invetsigate the possibility of representing tn-valued
functions of one variable in the form

(4.2.1)
m-l

f(x) = L arhr (x + q) (q E Jm).
r=O

The representation (4.2.1) represents, from one side, a generalization of
the polynomial form (4.1.1) for the system hr(x+q) (qEJm) is used instead
of the system hr(x) (r=O,..., tn-I). The same complete set of functions as
for (4.1.1) is being used for the functions hr (x + q) may be obtained from the
functions hr (x) so that the variable x + q is first realized. On the other hand,
the representation (4.2.1) is a generalization of the polynomial representation
(3.4.1) for the system hr(x+q) used instead of the system of functions (x+qY.
Therefore the polynomial representations may be regarded 2.S a particular
case of the representation (4.2.1) when hr(x+q)=(x+qY.

The proofs of the theorems in this chapter are analogous to the previous
ones, but they will nevertheless be given because this will be the most general
case of the representations which will be considered in this thesis.

Put H*=llho(x+q), ..., hm-t(x+q)ll. Then (4.2.1) will have the fol-
lowing matrix. form
(4.2.2) f(x)=H*A.

Replacing the values for the variable x in (4.2.1) the following system
of congruences will be obtained

(4.2.3)
m-l

L arhr(k+q)=f(k) (k=O,..., tn-I),
r~O

or in matrix form
(4.2.4 ) L * A = F,

of the system (4.2.3) and

ho (q) hI (q)
'" hm-l (q)

ho(q+l) h1(q+l) hm-,(q+l)

where L * is the matrix

L*=

ho(q-l) hI (q-l) hm-t(q-l)

Confering the matrix L * to the matrix L from the pro ceding passage
it can be seen that L* is derived from L by a cyclic shift of the rows
for q places upwards.

The lemma from the passage 3.4 holds for the ring Jm if the determi-
nant of the matrix satisfies the condition of Theorem 4.1. Thus, in order that
there exist a unique solution of the sustem (4.2.3) it is necessary and sufficient that
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the matrix L or L * has an inverse matrix for any value of q E Jm.
note (L*t1=W* then from (4.2.4) it follows that A= W* F and
in (4.2.2)
(4.2.5)

The system (4.2.2) can also be written in the following way

[f we de-
replacing

f(x) =H* W* F.

m-l

.2: a, h, (k) = f(k- q)
,=0

(k=O,..., m-l),

or in matrix form LA=F*, where (F*)T=llf(m-q) ... f(m-q-l)11 and
is obtained from the vector F by a cyclic shift of the coordinates for q places
downwards.

It is now A = L-1 F* = WF* and replacing A in (4.2.2) one more matrix
form for the representation (4.2.1) is obtained

(4.2.6) f(x) =H* WF*.

The representations (4.2.5) and (4.2.6), respectively, will be called the
generalized forms for m-valued functions of one variable.

Now let f(X) be a m-valued function of n variables. Let the system of
functions h, (x) satisfy the conditions of Theorem 4.1. The following theorem
will be proved.

4.4. Every m-valued function of n variables has a representation of theTheorem
form
(4.2.7)

(4.2.8)

f(X)=H;W; Fj,

f(X)=H; WJ;,

Proof. Let us investigate the conditions of existence for f(X) of the fol-
lowing representation

(4.2.9)
m-I

f(X)= L h,(xj+ qj) a, (xl' ..., Xj-l Xj+l"'" xn)'
,=0

Replacing the values of the variable Xj in (4.2.9) and repeating the same
procedure as with obtaining the representations (4.2.5) and (4.2.6), the rep-
resentations (4.2.5) and (4.2.6), the representations (4.2.7) and (4.2.8) follow
(see [52]).

The representations (4.2.7) and (4.2.8) will be called the generalized ex-
pansion theorem of m-valued functions of n variables about the functions
h, (Xj + qj) of the variable Xj'

Starting from the representations (4.2.7) and (4.2.8) the following theorem
will be proved.

4.5. Every m-valued function of n variables has a representation of theTheorem
form
(4.2.10)

(4.2.11)

f( X ) = ( H* x . . . x H* ) (W* x . . . x W* ) F1I n 1 n'" n'

f( X ) = (H* x . , . x H*) (w x . . , x W ) F*1 n.l n I...n'
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where the matrix W; is derived from the matrix Wj (i = 1,. . ., n) by a cyclic
shift of the columns for q places to the left. F;...

n
is derived from the vec-

tor Fl'" n by a cyclic shift of the coordinates for q places downwards. The value
q is determined by q = ql mn+l+ q2mn-2+ . . . + qn (real arithmetic).

Proof. The proof will be given for (4.2.10). The proof for (4.2.11) is
analogous to that for (4.2.10).

The proof is by induction on n. For n = I the theorem holds by (4.2.7)
Assume that it holds for n - I and let us prove that then it will also hold
for n.

Let us express the function f(X) about the functions h,(xn+qn)(r=
= 0, . . . , m - 1) of the variable xn according to (4.2.7). All the coordinates of

the vector Fj are functions of n - 1 variables. According to the inductive as-
sumption each of these coordinates for the variables Xl' . . . , xn-l has a rep-
resentation of the form

(4.2.12) (k=O,..., m-1),

where Y* = H; x . . . x H:-l' Z* = W; x . . . x W:-l and where Fl. ..n-l (xn= k)
denotes that in each COOldinate of the vector Fl... n-l the variable xn should
be replaced by the value k.

Expanding (4.2.7) and replacing f(xn = k) according to (4.2.12) it will
be obtained that

m-l m-l
f(X)= L L h,(xn+qn)wrkf(xn=k)

r=O k=O

m-l m-l

= L L hr(xn+qn)[Y*Z*Fl...n-l(xn=k)]
,=0 k=O

m-l m-l

= L L [h;(xn+q,)Y*](wrkZ*)Fl...n(xn=k)
,=0 k=O

= (y* x H:) (Z* x W:) Fl...j'

whence the proof of (4.2.10) follows immediately.
The representations (4.2.10) and (4.2.11) will be called the generalized

polynomial form for m-valued functions of n variables.
One more further generalization of the polynomial forms will be given.

Let the system of vectors

(4.2.13) (r=O,..., m-1),

satisfy the conditions of theorem 4.1. Then every m-valued function can be
represented by polynomial forms (4.2.5) or (4.2.6).

If the system of vectors

(4.2.14) hr (x + q) (r = 0, . .. , m - 1)

is used then each m-valued function will have from one to mn different rep-
resentations by means of the generalized polynomial forms (4.2.10) or (4.2.11)
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(for qi = 0, . . . , m -" 1, i = 1, . . . , n). The particular case of these representations
are the polynomial forms which are obtained for qi = O. If the matrix of the
system of vectors is circulant then there is only one polynomial form.

Furter generalization of polarized polynomial form are representations
with the system of vectors

(4.2.15) (r=0,...,m-1; qEJm).

These representations will be caJled non polarized polynomial forms. Mat-
rices which characterize these forms for m-valued functions of one variable
are derived by the cyclic shift of each column particularly for qr places up-
wards but not by the cyclic shift of rows as with the generalized polynomial
forms. For a given matrix of the order m, mm different matrices can be deri-
ved by means of this shift. However, the determinants of all these matrices
will not satisfy the condition of the Theorem 4.1.

From the results of M. COHN it follows that, for the case of the field Jp,
every p-valued function of one variable has pp-l non polarized polynomial
forms. However, there are matrices of the order p which allow obtaining a still
greater number of nonpolarized polynomial forms. Thus, investigating on the
computer all the matrices of the order 3 x 3 over the field J3 it has been estab-
lished that there are matrices which allow obtaining 24 non polarized poly-
nomial forms which is significantly more than it has been known so far.

The problem of investigation of the number of non polarized polynomial
forms for the matrices of the order m over the ring Jm has not been conside-
red so far and remains unsolved.

4.3. Polynomial functions mod m

If an m-valued function of one variable is representable by the polynomial

(4.3.1)
s(m)-l

f(x)= L arxr (arE Jm),
r=O

it will be caJled a polynomial function.
When m = p (p a prime), then every m-valued function is polynomial

and s (m) = p (see [53, 54]). All the functions over the ring Jm are not po-
lynomial ones and the power s (m) < m and is defined by the expression (see
[55, 56])

(4.3.2) s(m)=min{mlj!}.
j

Let us mention that the value for s (m), as derived from the generalized
FERMATtheorem (see [57, 58]) in most cases is considerably greater than the
value defined by (4.3.2).

Replacing the values for the variable x in (4.3.1) the following system
of congruences is obtained:

(4.3.3)
s(m)-l

L arkr = f(k)
r=O

(k = 0, . . . , m - 1).



o 0 0 f(O)

F 1s(m)-1 f(1)

L'= 2 22 2s(m)-1 f(2)

1 m-1 (m-1)2 (m-1)s(m)-1 f(m-1)

O! 0 0 ... 0 DOf(O

o 1! 0 0 Df (0)

L~= 0 0 0 (8-1)! DS-1 f(O)

o 0 0 0 DS f(O)

o 0 0 0 Dm-I f(O)
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The extended matrix of the sistem (4.3.6) has the following form

The rows of the matrix L' will be denoted by the numbers from 0 to
m - 1 and the columns from 0 to s (m).

If the notion of the finite difference is defined over Jm as over the field
of real numbers (see [32]), the following relation can be proved as well

Drf(O) = fer) -
~~(:

)D1(0).(4.3.4)

The following equivalent transformations will be performed over the
matrix L' (see [59, 60]).

The row denoted by zero previously multiplied by (~) is subtracted

from the r-th row (r=l, ..., m-l) (It is defined that 0!=1 and (~)=

= ( ~) = 1 (n = 1, 2, . . .) over the ring J m)' Then the corresponding elements

of the s - 1-th column previously multiplied by 1 are subtracted from the
elements of the r-th column (s=2, ... ,8-1) (the notation 8=s('11) will be

used as a short from). Then the first row, previously multiplied by (~),is subtrac-

ted from the t-th row (r = 2, . . . , m - 1). Transformations of the rows from
the 8-th to the m-th step only are being preformed. As a result the following
matrix is obtained (at every step of the transformation on the matrix L',
replacing in the 8-th column has been done according to the formula 4.3.4).)

Let L be a matrix of the
following matrix from

(4.3.5)

system of congruences (4.3.3). Then it has the

LA=F.

The transformation of the rows of the extended matrix L' at the k-th
step (k = 1, . . . , 111- 2) may be represented as the product of the left-hand
and right-hand side of the (4.3.5) by the square matrix of the order m which
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has ones on the main di2gonal <Lnd at the i-th place of k-th column elements

- (:) (i = k + 1, . . . , m - 1).

Transformations of the columns at the k-th step (k= 1, ... , S -2) may
be represented as the multiplication of the matrix L' from the right-hand
side by the square m<Ltrix of the order S which has ones on the main diago-
nal and elements - k on the diagonal j - i = 1 (i, j ordinal numbers of the row
and column of a certain element of the matrix), beginning from the k-th to
the S-I-th column.

Then the system (4.3.5) may be replaced by the equivalent system

(ULV) (V-1A) = UF,(4.3.6)

where the matrices U and V represent the product of all matrices
the transformations of the rows and columns have been done.

Put ULV =Ld, V-I A =B, F~ = II DOf(O), ... , Dm-l f(O) II. Then
of congruences (4.3.6) takes the following form

(4.3.7) LdB=FD'

The two known results from the theory of numbers
will be quoted as lemm<Ls (see proofs in [49]).

by which

the system

will be required which

Lemma 4.1. Let (a, m) = d. The congruence ax = b (mod m) has no solution
if b cannot be divided by d. If b is divisible by d then the congruence has d
solutions.

Lemma 4.2. If x takes the values from the complete set of the residues modulo m,
then x + b, b being any prime, takes the values from the complete set of the
residues modulo m as well.

The following theorems will be proved.

Theorem 4.6. The m-valued function of one variable is polynomial if and only
if for all values r = 0, . . . , m-l

(4.3.8)

Proof.

Drf(O) = 0 (mod (r!, m)) .
The matrix equation may be written in the following form

(4.3.9)
r!br=Drf(O)

Obr = Drf(O)

(r=O,... , s(m)-l)

(r=s(m),..., m-I).

In order that the system (4.3.9) should have, a.ccording to Lemma 4.1,
a unique solution with respect to br, it is necessary and sufficient that for
all r = 0, . . . , m -. I Drf(O) is divisible by (r!, m). This completes the theorem.

The condition when a function over the ring Jm will be polynomial has
been considered in references [61, 62]. Another case, analogous to Theorem 4.6,
when a function will be polynomial, has been proved in [61].

For the case when m = PI . . .
Pk" the condition for a function tQ be

polynomial has been given in [63].
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A. J. KEMPNERhas proved in [55] how many m-valued polynomial func-
tions of one variable there are for a given m. It will be proved here using
the equivalent system of congruences (4.3.7) obtained the folloving theorem.

Theorem 4.7. The total number N (m) of the polynomial m-valued functions of
one variable is

ms(m)
N(m)= .

(O!,m). . . ([s (m)-l]!,m)

Proof. The system (4.3.9) can be written, according to (4.3.5), in the
following way

(4.3.10)

(4.3.11)
r!br=f(r)-f,. (r=O,...,.I(m)-I),

Obr=f(r)-fr (r=s(m),...,m-l),

f,. =
~~ (: )Dif(O).

where

For every r, fer) can take one of the values from Jm. When fer) takes
all possible values from J m then, according to the Lemma 4.2, fer) - f,. will
also take all possible values from Jm. However, fer) will satisfy the condition
(4.3.8) only for those values for which fer) - fr is divisible by (r!, m). Hence,
the proof of the theorem follows immediately.

On the basis of the known concepts from the theory of numbers, the
equation (4.3.10) can also be written in the following way

(4.3.12)
k

N (m) = TIN (p?),
i~l

4.4 Transformations of the m-valued functions

The analogy be pointed out existing between the representations of m-va-
lued functions by polynomial forms and transformations, particularly FOURIER
transformation. K. S. MENGERhas shown in [45] how the polynomial representatios
of p-valued functions of one variable can be interpreted as FOURIER tran~for-
mation for the case when f(O) = O.

That analogy will be obtained putting in (3.3.2) f(O) = 0

(4.4.1 )
p-l

a(r)=(p-l) L f(x)x-r,
x=l

(4.4.2)
p-l

f(x) = L a(r)xr.
r~l
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Conferring with the FOURIER transformation

(4.4.3)
+00

G(<iI) = 2~ J f(t)e-jCi>tdt,

(4.4.4 )

+00

f(t)=J G(<iI)ejo>ld<il.

-00

it can be seen that there is the following analogy: x-r corresponds to e-j{i)t, xr

corresponds to ej{i)t,summation to integration etc. Since the function f(x) is always
given either in tabular or in analytical form it will be considered as the ori-
ginal and a (r) as its image.

From these consideradions a conclusion imposes naturaly that, without
the limitation f(O) = 0, the following transformation for the given p-valued fun-
ction f(x) of one variable should be introduced

(4.4.5)
p-l

a(r)=(p-1) 2:f(x)(rrl+xrl-r-I),
x~O

(4.4.6)
p-l

f(x)= 2:
a(r)xr.

r=O

Representations of the m-valued functions by polynomial forms can also
be considered as a transformation. The rows of the matrix W in (4.1.6) can
be considered as the m-valued functions of one variable, that is

Wo(0)

Wo(1)

WI (0)

WI (1)

. .. Wm - I
(0)

wm-I(I)

Wo (m-l) WI (m-l) Wm-I (m-l)

Then it can be written

(4.4.8)

m-l
a (r) = 2: Wr (x) f(x),

x=O

m-l
f (x) = 2: a (r) hr (x).

r=O

(4.4. 7)

Analogous considerations can also be carried out for the functions in
several variables.

The way of obtaining coefficients ar(r=O. ..., m-1) in polynomial forms
for the m-valued functions of one variable can be generalized in the fol-
lowing way.



ho (eo) hi (eo) ... hm - 1 (eo)

L=
ho (e 1) hi (el) hm-I (el)

ho(em-I) hi (em-I) hm-I (em-I)
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Let a system of m m-valued functions Uj(x) (j = 0, . . ., m - I) of one
variable be given, which will be characterized by the matrix

Uo (0)

Uo (1)

UI (0)

UI (1)

. .. Um - I
(0)

um-I (1)

u=

uo(m-I) u! (m-I)

and let (det U, m) = 1. If the representation
(4.1.4) it can be written as follows

(4.4.9) A = [L-I (UTr1] (UT F).

The expression (4.4.9) can be considered as the most general one and
the coefficients in the polynomial forms can be determined by it. However,
the following two cases are of particular importance.

Let U = Land LTL = diag (doo, . . . , dm-I. m-I) be a diagonal matrix where
(d",m)=l is true for all drr(r=O, .,. ,m-I). Then, according to (4.4.9)
and (4.1.2), it follows that

Um-I (m-I)

(4.1.6) exists then, according to

(4.4.10)
m-I

ar = d;;.t
.z: hr (x)f(x)

x~o

(r = 0, . . . , m - I)

m-I
where drr = L: h; (x).

x=o
If U = Land L is an orthogonal matrix, i.e. LTL =1, then

(4.4.11)
m-l

ar = .z: hr (x)f(x).
x=o

The coefficients ar in polynomial forms, which represent an analogy of
the expansion into the orthogonal series, are determined by the relations
(4.4.10) and (4.4.11).

4.5. Algebraic forms

Let R={eo, el, ..., em-I} and let (R, +, .) form an algebraic structure
of the commutative ring with unity (unity elements for operations + and.,
reprectively, are denoted by eo and el).

It will be shown that results about the representations of m-valued func-
tions which have already been considered may be transferred to the ring R.
Those representations will be considered as the generalization of the polyno-
mial forms considered in references [7, 52, 64 - 67] and in this chapter.

Let a system of m-valued functions of one variable hr (x) (r = 0, ... , m - I)
be given. This system will be characterized by the following matrix
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Let us investigate the condition that every m-valued function of one
variable, given by its values f(eo), ... ,f(em-I)' may be represented over the
ring R in the following way

(4.5.1)
m-l

f(x)= L ajhj(x) (ajER),
r~O

or in the matrix form
{4.5.2) f(x) = HA.

Replacing the values for a variable x in (4.5.1) the following system
()f equations is obtained:

(4.5.3)
m-l

f(k) = L arhr(k) (k = eo, . . . , em-I)'
r=O

which has the following matrix form

(4.5.4)

where pT
= Ilf(eo) ... f(em-I) II.

The following theorem will be proved.

P=LA,

Theorem 4.8. A necessary and sufficient condition for the existing of a unique
representation of the form (4.5.1) for every m-valued function of one variable
is that the determinant of the matrix L be an element from R which is inver-
Jitle in reference to the operation..

Proof.

(4.5.5)

System (4.5.3) may be written in the form (see [47])

!J.ar=!J.r (r=O,..., m-l),

is derived replacing the r-th column by the columnwhere !J.= det Land !J.r
of the function values.

In order that a unique solution for ar exists it is necessary and sufficient
that det L be an element from R which is invertible with respect to the
operation. (see [68]). This completes the proof.

From the invertibility of the determinant over R it follows that the
matrix L will be regular, i.e., the matrix L will have over R the inverse
matrix L-1. Then, from (4.5.4) A=L-1P and replacing A in (4.5.2) it follows
that
(4.5.6) f(x)=HL-IP.

The representations of the form (4.5.1) (or the matrix form (4.5.6)) will
bt: called the algebraic forms.

Further gereralization of the algebraic forms are the representations

(4.5.7)
m-l

f(x)= L arhr(x+eq) (eqER),
r=O

or in the matrix form
(4.5.8) f(x) = H* A,

where H*=llho(x+eq) .., hm-l(x+eq)ll,
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Replacing the values for the variable x in (4.6.7) the following system
of equations will b;:: derived

m-I
J(k)= L a,h,(k+eq)

,=0

This sistem of equations may be represented in the matrix form in the
following two ways

(4.5.9)

(4.5.10)

F = L *A,

F* = LA,

where (F*)T=IIJ(em-q) ... J(em-q-l)II and L* is the matrix which is obtai-
ned from the matrix L by a cyclic shift of the rows for q places upwards.

As det L * =
( - 1

)qmdet L and since det L is an element from R which
is invertible in R the inverse m:ltrix (L*)-l will hence exist, for from the
invertibility of det L, the invertibility of element - det L follows (see [68]).

According to (4.5.9) and (4,5.10) it follows that

(4.5.11) A = (L*)-IF=L-1F*.

Replacing (4.5.11) in (4.5.8) it will finally be obtained that

(4.5.12)

(4.5.13)

J(x) = H* (L*)-IF,

J(x) =H*L -IF*.

The representations (4.5.12) and (4.5.13) will be called the generalized
algebraic forms.

For every m-valued function of one variable there are in total m gene-
ralized algebraic forms. The particular case for eQ= eo are the algebraic forms.

The analytical representations by algebraic forms and generalized alge-
braic forms for m-valued functions of n variables can be obtained in the same
way as under 4.2. Therefore they will not be considered here.

5. SOME UNSOLVED PROBLEMS AND POSSIBLE GENERALIZATIONS

5.1. It is of interest in technical applicatic ns that a representation of m-valued
functions is to be found whose realization is optimal according to a criterion
given in advance. As a criterion of that kind, for example, serve the total
number of logical elements + and. (mod m) required for the realization of
the given function. This problem is known as the minimization of m-valued
functions.

The generalized polynomial forms (4.2.1) give a possibility that m dif-
ferent analitical representations by polynomial forms in the general case can
be derived for the same m-valued function of one variable. The problem how
to select the value q to derive a minimal pc1yncmial form has remained
unsolved. D. A. POSPELOVhas shown in [24] that this problem can be reduced
to the linear integer programming but further considerations do not exist.
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Still larger optimization of the polynomral forms can be achieved if the
vector system (4.2.15) obtained by cyclic shift of certain columns is used for
representations. There are two problems left which are worth paying attention.

First, how to establish for the given matrix L of the order m how many
of mm matrices, obtained by cyclic shift of the columns, satisfy the condition
of Theorem 4.1.

Secondly, how to find an optimum polynomial form among the possible
ones of that kind.

5.2. Instead of using m functions of one variable for the polynomial forms
(4.1.1), any subset of those functions and the !>ubset of all possible compo-
nentwise products of those functions may be taken. It would be interesting
here to find out criteria for determining when the componentwise product
of two or more vectors over the ring Jm will be linearly independent with
those vectors as well as which and how many of such products will be line-
arly independent with the given set of vectors and with the rest of the products.

5.3. Polynomial forms may be used for generation of codes over the field Jp
or the ring J

m'
This was not considered in this thesis as well. Consideration

of the codes over the ring Jm represents a particular interest for, as far as
the autho r knows, such codes have not been considered so far.

For the case of the field Jp, codes of the REED-MuLLER type for p = 2
can be generated by polynomials mod p as well (see [1, 28, 37, 38]). Such a
generalization has not been considered yet.

Consideration of these representations will be interesting as well as the
investigation of their deriving.

5.4. Let us point out some more interesting unsolved problems.
In the case of the synthesis of the switching circuits by POVAROVcascade

method (see [14]) over any complete set of functions, the sequence by means
of which the expansion is perfOlmed results in complexity of the derived swit-
ching circuits. The hypothesis on usage of the BOOLEandifference to determine
the sequence of expansion has been given in reference [8] in connection with
the synthesis of switching circuits with majority functions. It will surely be of
interest to try to find out of what significance the BooLEan difference may
be here.

The polynomial functions mod m have been considered under 4.3. It is
not known at present how many of all permutations of the set {O, 1, . . . , m - I}
may be representen by the polynomials for the case of the ring Jm.

Besides representations by polynomials or polynomial forms, m-valued
functions can be representad by other canonical forms as well. Transition from
one representation to another for m #- 2 has not been considered so far (for
m = 2, see [20]).

The operation + (mod m) can be apiled to the arithmetic units of a
computer and that is why its incorporation into the complete set of functions
is of importance (see [69]). However, this is not true for the operation.
(mod m) so that it would also be interesting to investigate another complete
sets into whrch the operation + (mod m) is incorporated. Some considerations
on this subject can be found in reference [70].

3 Publikacije



34 Zivko Tosic

REFERENCES

1. S. B. AKERS: On a theory of Boolean functions. J. Soc. Ind. and ApplI. Math.
7 (1959), 487-498.

2. R. D. BOCHMANN: Ober Aaleitungen in der Schaltalgebra und einen damit formuli-
erbaren Entwicklunssatz. Wiss. Z. Techn. Univ. Dresden, 14 (1965), 1523-1527.

3. I. S. REED: A class of multiple-error-correcting codes and the decoding scheme.
IRE Trans. Inform. Theory, PGIT-4 (1954), 38-49.

4. F. F. SELLERS, et a1.: Analysing errors with the Boolean difference. IEEE Trans.
Computers, C-17 (1968), 676-683.

5. F. F. SELLERS, et a1.: Error detecting logic for digital computers. New York, 1968.
6. D. BOHMAN: Kriticeskie perehody v diskretnyh shemah i strukturnye metody ih

lokalizacii. Dissertacija na soiskkanie ucenoj stepeni kandidata tehniceskih nauk. Moskovskij
elektrotehniceskij institut svjazi, Moskva, 1968.

7. D. A. POSPELOV:Logiceskie metody analiza i sinteza shem. Izd. 2-e Moskva, 1968.
8. V. I. VARSAVSKIJ,L. Ya. ROZENBLJUM: 0 minimizacii piramidaljnyh shem iz maio-

ritarnyh elementov. Izvestija AN SSSR, Tehniceskaja kibernetika, No 3, 1964, str. 24-29.

9. V. AMAR, N. COLDULMARI:Diagnosis of large combinational networks. IEEE Trans.
Electronic Computers, EC-16 (1967), 675-680.

10. Z. TOSIC: Arifmeticeskie predstavlenija logiceskih fuukcij. Sb. "Diskretnye avtomaty
i seti svjazi", Moskva 1970, s. 131-136.

11. C. E. SHANNON: A symbolic analysis of relay and switclfing circuits. Trans. AlEE,
57 (1938), 713-722.

12. M. COHN: Switching function canonical forms over integer fields. Ph. D. Disserta-
tion, Harvard University, Cambridge, Mass., Theory of switching, Rept. BL-27, Dec. 1960.

13. A. HAUSENBLAS:Schaltungssynthese mit Koinzidenz-nnd Antivalenzgattern. Elektron.
Rechenanlagen 4 (1962), 217-221.

14. G. N. POVAROV: Matematiceskaja teorija sinteza kontaktnyh (l, k) - poljusnikov.
Dokl. AN SSSR 100 (1955), 909-912.

15. Z. TOSIC: Matricnyj zposob opredelenija proizvodnyh v bulevoj algebre. Sb. "Doklady
NTK po itogam NIR za 1968-169 gg. Podsekcija VT". Mosk. energ. in-t, Moskva 1970,
s. 96-100.

16. I. I. ZEGALKIN: 0 tehnike vyCislenija predloienij v simvoliceskoj logike. Matern.
sbornik 34 (1927), 9-28.

17. A. P. MISINA, I. V. PROSKURJAKOV:Vyssaja algebra (linejnaja algebra, mnogoCleny,
obScaja algebra). Moskva, 1962.

18. H. R. MULLER: Algebraischen Aussagenkalkul. Akad.. Wien, S. - B. IIa, 149
(1940), 77-115.

19. M. J. GAZALE: Les structures de communication a m valeurs et les calculatrices
numeriques. Paris, 1959.

20. P. CALINGAERT:Switching function canonical forms based on comutative and asso-
ciative binary operations. Trans. AlEE, 80 (1961), 808-814.

21. R. J. LESHNER: Transformations among switching function canonical forms. IEEE
Trans. Electron;c Computers, EC-12 (1963), 129-130.

22. M. COHN: Inconsistent canonical forms of switching functions. IEEE Trans. Elec-
tronic Computers, EC-ll (1962), 284-285.

23. Z. TOSIC: Polinomialjnye predstavlenija bulevyh funkcij i ih minimizacija. Izv. AN
SSSR, Tehn. kibernetika, No 3, 1967, 141-143.

24. D. A. POSPELOV:Ob odnoj postanovke zadaCi minimizacii v mnogoznacnyh logikah.
Sb. "Mnogoznacnye elementy i struktury", Moskva, 1967, s. 112-114.

25. G. E. CEJTLIN: Realizacija bulevyh funkcij v algebre s sistemoj operacij: ".", ,,-",
,,+" mod 2". Sb. "Teorija avtomatov. Trudy seminara", No 3, 1966, s. 84-92.

26. S. EVEN, et al.: On minima i modulo 2 sums of products for switching functions.
IEEE Trans. Electronic Computers, EC-16 (1967), 671-674.



Analytical representations of m-valued logical functions .., 35

27. A. MUKHOPADHYAY,G. SCHMITZ: Minimization of exclusive or and logical equi-
valence switching functions. IEEE Trans. Computers, C-19 (1970), 132-140.

28. D. E. MULLER: Application of Boolean algebra to switching circuit design and to
error detection. IRE Trans. Electronic Computers, EC-3 (1954), pp. 6-12.

29. C. V. RAMAMOORTHY:Procedures for minimization of "exclusive-or" and "logical-
-equivalence" switching circuits. 6 th IEEE Annual Symp. on Switching Circuit Theory and
Logical Design, Oct. 1965, pp. 143-149.

30. V. Y. SHEN, A. C. McKELLER: An algorithm for the disjunctive decomposition of
switching functions. IEEE Trans. Computers, C-19 (1970), 239-248.

31. J. WALLACH:Bemerkungen zur Schaltunssynthese mit Koinzidenz und Antivalenzgattern
Elektron. Rechenan. 7 (1965), 307-309.

32. B. P. DEMIDOVI<';,1. A. MARON: Osnovy vyCisliteljnoj matematiki, izd. 2-e. Mos-
kva, 1963.

33. P. L. HAMMER (Ivanescu), S. RUDEANU: Boolean methods in operation research and
related areas. Berlin, 1968.

34. P. L. IVANESCU,S. RUDEANU: Pseudo-Boolean methods for bivalent programming.
Berlin, 1966.

35. O. LoWENSCHUSS;Non-binary switching theory. IRE Natl. Cony. Record 6 (1958),
No 4, pp. 305-317.

36. P. E. WOOD: Switching Theory. New York, 1968.
37. W. E. PETERSON:Error correcting codes. New York, 1961.
38. L. F. BORODIN: Vvedenie v teoriju pomehoustojeivogo kodirovanija. Moskva, 1960.
39. C. W. GOLOMB: Shift register sequences. San Francisko, 1967.
40. Linear sequential switching circuits. Ed. by W. K. HAUTZ. San Francisko, 1965.
41. T. C. BARTEE, D. 1. SCHEIDER: Computation with finite fields. Information and

Control 6 (1963), pp. 79-98.
42. A. GILL, L. P. JACOB: On a mapping polynomials for Galois fields. Quart. Appl.

Math. 24 (1966), 57-62.
43. M. STOJAKOVIC:Obrascenie matric, vstreeajuseihsja v teorii sinteza relejnyh kontak-

tnyh shem. Zurnal vycisl. matematiki i matematiceskoj fiziki 6 (1966), 158-161.

44. H. L. ALTHAUS, R. J. LEAKE: Inverse of a finite-field Vandermonde matrix, IEEE
Trans. Inform. Theory IT-IS (1969), Pt. 1, p. 173.

45. K. S. MENGER: A transform for logic networks. IEEE Trans. Computers, C-lS
(1969), 241-250.

46. M. COHN: Canonical forms of functions in p-valued logics. Proc. 2 nd Annual Symp.
on Switching Circuit Theory and Logical Design. AlEE Publ. No S-134, New York, 1961,
pp. 169-177.

47. D. S. MITRINOVIC, D. Z. DJOKOVIC: Polinomi i matrice. Beograd, 1966.
48. B. P. DEMIDOVIC, 1. A. MARON, E. Z. SUVALOVA: Cislennye metody analiza, izd.

2-e. Moskva, 1963.
49. 1. M. VINOGRADOV:Osnovy tearii eisel, izd. 7-e. Moskva, 1965.
50. C. JORDAN: Sur Ie nombre des solutions de la congruence: aik I"",A (mod m). J.

Math. Pure Appl. (6) 7 (1911), 409-416.
51. N. J. FINE,!. NIVEN: The probability that a determinant be congruent to a (mod m).

Bull. Am. Math. Sos. 50 (1944), 89-93.
52. Z. Toslc: Polinomialnye preostavlenija m-znacnyh logiceskih funkcij. Publikacije El.-

-tehn. Fakulteta Univerziteta u Beogradu ser. matem. i fizika, No 302-319, 1970, s. 43-48.

53. B. A. BERNSTEIN:Modular representations of finite algebras. Proc. Intern. Math.
Congress, Toronto, 1924, vol. 1. Univ. of Toronto Press, 1928, pp. 207-216.

54. S. V. YABLONSKIJ: Funkcional'nye postroenija v k-znacnoj logike. Trudy matem.
in-ta im Steklova, 51 (1958), s. 5-142.

55. A. J. KEMPNER: Polynomials and their residue systems. Trans. Amer. Math. Sos.,
22 (1921), pp. 240-288.

56. L. E. DICKSON: Introduction to the theory of numbers. Chicago, 1929.

3*



36 Zivko Togi6

57. V. G. KIRIN: On the polynomial representation of operations in the n-valued pro-
positional calculi. GIasnik mat.-fiz. i astronomski, 18 (1963), No 1-2, pp. 3-12.

58. D. A. SINGMASTER:A maximal generalization of Fermat's theorem. Math. Mag.,
39 (1966), No 2, pp. 102-107.

59. H. J. S. SMITH: On systems of linear independente equations and congruences. Phil.
Trans. Royal Sos. London, pt. I (1861), pp. 293-326.

60. H. J. S. SMITH: On the arithmetical invariants of a rectangular matrix of which
the consituents are integral numbers. Proc. London Math. Soc., 4 (1871-1873), pp, 236-253.

61. L. CARLITZ: Functions and polynomials (mod pn). Acta arithmetica, 9 (1964), No 9,
pp. 67-78.

62. N. N. AJZENBERG, I. V. SEMJON, A. I. CITKIN: Polynomial'nye predstavlenijafunkcij
k-znacnoj logiki. Avtomatika i vyCislitel'naja tehnika, No 2, 1971, pp. 6-13.

63. N. N. AJZENBERG: 0 predstavlenii funkcij k-znacnoj logiki polinomami po mod k
Kibernetika, No 2, 1968, s. 102.

64. D. A. POSPELOV,Z. TOgle: Polinomial'nye predstavlenija v mnogoznacnyh logikah.
Sb. "Mnogoznacnye elemeny i struktury" Moskva, 1967, pp. 115-121.

65. Z. TOgle: Polinomial'nye predstavlenija v odnom klasse trehznacnyh logik. Izv. AN
SSSR, Tehn. Kibernetika, No 2, 1967, 114-118.

66. D. A. POSPELOV,Z. TOgle: Polininomial'nye predstnvlenija v mnogoznacnyh logikah.
Sb. "Sintez diskretnyh avtomatov i upravljajugCih ustrojstv" Moskva, 1968, s. 132-139.

67. Yu. L. IVAs'KIv, D. A. POSPELOV,Z. TOgle: Predstavlenija v mnogo,macnyh logikah
Kibernetika, No 2, 1969, s. 35-42.

68. O. ZARISKI, P. SAMUEL: Commutative algebra, vol. 1, Princeton, 1958.
69. Z. L. RABINOVIC: Voprosy postroenija vyCislitelnyh masin na elementah s mnogo-

znacym strukturnym alfavitom. Sb. "Mnogozracnye elementy i struktury". Moskva, 1967,
s. 80-93.

70. N. N. AJZENBERG, Z. L. RABINOVIC: Nekotorye klassy funkcional'no polnyh sistem
operacij i kanoniceskie formy predstavlenija funkcij mnogoznacnoj logik!. Kibernetika, No 2,
1965, s. 37-45.

CONTENTS

1. Introduction I 1

2. Polynomial representations of switchingfunctions I 4
2.1. Boolean difference I 4
2.2. Expansion theorem I 6
2.3. Basic polynomial representations I 7
2.4. Generalized polynomial forms I 9
2.5. Arithmetical representations I 10
3. Representations over the field of integers mod pilI

3.1. Notations and introductory notes I 11
3.2. spg polynomial forms I 12
3.3. Polynomials mod p I 14

3.4. Generalized polynomials mod p I 16
4. Representations over the ring of integers mod m I 19
4.1. sph polynomial forms I 19

4.2. Generalized polynomial forms I 22

4.3. Polynomial functions mod m I 25

4.4. Transformations of the m-valued functions I 28
4.5. Algebraic forms I 30
5. Some unsolved problems and possible generalizations I 32

6. References I 34


