386.

THE EVALUATION OF CHARACTER SERIES BY CONTOUR INTEGRATION*

Bruce C. Berndt

A classical and well known application of the calculus of residues occurs in the evaluation of series of the form,

$$
\sum_{n=-\infty}^{+\infty} f(n) \text { or } \sum_{n=-\infty}^{+\infty}(-1)^{n} f(n)
$$

where f is a suitable meromorphic function. See the texts by Hille [4, pp. 258-264] and Mitrinović [6, pp. 80-87] for good discussions of this topic. In this paper we extend this theory by showing how to evaluate by contour integration character series of the form,

$$
\sum_{n=-\infty}^{+\infty} \chi(n) f(n) \text { or } \sum_{n=-\infty}^{+\infty}(-1)^{n} \chi(n) f(n)
$$

where χ is a primitive character modulo k.
Let $G(z, \chi)$ denote the Gaussian sum,

$$
G(z, \chi)=\sum_{j=1}^{k-1} \chi(j) e^{2 \pi i z j / k}
$$

and put $G(\chi)=G(1, \chi)$. For primitive characters, we have the factorization theorem [1, p. 312],

$$
\begin{equation*}
G(n, \bar{\chi})=\chi(n) G(\bar{\chi}), \tag{1}
\end{equation*}
$$

where n is an integer. We also put

$$
\delta=\frac{1}{2}\{1-\chi(-1)\} .
$$

Finally, $R\left\{g(z), z_{0}\right\}$ denotes the residue of $g(z)$ at $z=z_{0}$.

[^0]Theorem 1. Let f be meromorphic in the extended complex plane. Suppose that there exist positive numbers A and $a>1$ such that $|f(z)| \leqq A| |^{-a}$, uniformly as $|z|$ tends to ∞. Let $S=S(f)=\left\{z_{1}, \ldots, z_{m}\right\}$ denote the set of all poles of f. Then,

$$
\begin{equation*}
\sum_{\substack{n=-\infty \\ n \oplus S}}^{+\infty} \chi(n) f(n)=-\sum_{r=1}^{m} R\left\{\pi e^{-\pi i z} f(z) G(z, \bar{\chi}) / G(\bar{\chi}) \sin (\pi z), z_{r}\right\} . \tag{2}
\end{equation*}
$$

Theorem 2. Let f and S be as given in Theorem 1. Define

$$
\begin{equation*}
F(z, \chi)=\sum_{j=1}^{[k / 2]} \chi(j) e^{2 \pi i z / k}+(-1)^{\delta} \sum_{j=1}^{[(k-1) / 2]} \chi(j) e^{-2 \pi i z] / k} \tag{3}
\end{equation*}
$$

where $[x]$ denotes the greatest integer $\leqq x$. Then,

$$
\begin{equation*}
\sum_{\substack{n=-\infty \\ n \nsubseteq S}}^{+\infty}(--1)^{n} \chi(n) f(n)=-\sum_{r=1}^{m} R\left\{\pi f(z) F(z, \bar{\chi}) / G(\bar{\chi}) \sin (\pi z), z_{r}\right\} \tag{4}
\end{equation*}
$$

Proof of Theorem 1. Let C_{N} denote the square whose center is the origin and whose sides are parallel to the real and imaginary axes and are of length $2 N+1$, where N is an integer chosen large enough so that S is contained on the interior of C_{N}. By the residue theorem,

$$
\begin{align*}
\frac{1}{2 \pi i} \int_{C_{N}} \frac{\pi e^{-\pi i z} f(z) G(z, \bar{\chi})}{G(\bar{\chi}) \sin (\pi z)} d z & =\sum_{r=1}^{m} R\left\{\pi e^{-\pi i z} f(z) G(z, \bar{\chi}) / G(\bar{\chi}) \sin (\pi z), z_{r}\right\} \tag{5}\\
& +\sum_{\substack{n=-N \\
n \notin S}}^{N} R\left\{\pi e^{-\pi i z} f(z) G(z, \bar{\chi}) / G(\bar{\chi}) \sin (\pi z), n\right\}
\end{align*}
$$

If $n \notin S$, we have from (1)

$$
\begin{equation*}
R\left\{\pi e^{-\pi i z} f(z) G(z, \bar{\chi}) / G(\bar{\chi}) \sin (\pi z), n\right\}=f(n) G(n, \bar{\chi}) / G(\bar{\chi})=f(n) \chi(n) \tag{6}
\end{equation*}
$$

By our choice of C_{N}, we see that there exists a positive constant $M=M(\chi)$ such that for $z=x+i y$ on C_{N},

$$
\left|\frac{e^{-\pi i z} G(z, \bar{\chi})}{\sin (\pi z)}\right|^{2}=\frac{e^{2 \pi y} \sum_{j_{1}, j_{2}=1}^{k-1} \bar{\chi}\left(j_{1}\right) \chi\left(j_{2}\right) e^{2 \pi i x\left(j_{1}-j_{2}\right) / k-2 \pi y\left(j_{1}+j_{2}\right) / k}}{\sin ^{2}(\pi x)+\sinh ^{2}(\pi y)} \leqq M .
$$

Thus, the modulus of the integral on the left side of (5) is less than

$$
\frac{4(2 N+1) \pi A M}{|G(\bar{\chi})|\left(N+\frac{1}{2}\right)^{a}} .
$$

Hence, upon substituting (6) into (5) and then letting N to ∞, we obtain (2).

Proof of Theorem 2. Proceed as in the proof of Theorem 1. In this case we have for $n \notin S$,

$$
\begin{equation*}
R\{\pi f(z) F(z, \bar{\chi}) / G(\bar{\chi}) \sin (\pi z), n\}=(-1)^{n} f(n) F(n, \bar{\chi}) / G(\bar{\chi}) . \tag{7}
\end{equation*}
$$

If we replace j by $k-j$ in the second sum on the right side of (3), we have by the periodicity of χ,

$$
\begin{equation*}
F(n, \bar{\chi})=\sum_{j=1}^{[k / 2]} \bar{\chi}(j) e^{2 \pi i n j / k}+(-1)^{\delta} \sum_{j=1+[k / 2]}^{k-1} \bar{\chi}(-j) e^{2 \pi i n j / k}=G(n, \bar{\chi}), \tag{8}
\end{equation*}
$$

since $\chi(-j)=\chi(-1) \chi(j)$. By an argument similar to that in the proof of Theorem 1, there exists a constant $M=M(\chi)$ such that for z on C_{N},

$$
\left|\frac{F(z, \bar{\chi})}{\sin (\pi z)}\right| \leqq M .
$$

Proceeding as in the previous proof, and using (8) in (7), we obtain (4) upon letting N tend to ∞.

The hypotheses on f in the above theorems may be relaxed somewhat. We could prove a similir theorem if f were meromorphic only in the finite complex plane. The growth conditions on f may also be weakened in some cases. For example, see [4, pp. 260-263].

Example 1. Let $f(z)=1 / z^{2}$ in Theorem 1. If m is a positive integer, define

$$
M_{m}(\chi)=\sum_{j=1}^{k-1} \chi(j) j^{m} .
$$

Observe that for this example the left side of (2) is 0 if χ is odd. Therefore, assume that χ is even. Replacing j by $k-j$, we have since χ is even,

$$
M_{1}(\chi)=\sum_{j=1}^{k-1} \chi(-j)(k-j)=-\sum_{j=1}^{k-1} \chi(-j) j=-M_{1}(\chi) .
$$

Thus, $M_{1}(\chi)=0$. A simple calculation shows that

$$
R\left\{\pi e^{-\pi i z} G(z, \bar{\chi}) / z^{2} G(\bar{\chi}) \sin (\pi z), 0\right\}=-2 \pi^{2} M_{2}(\bar{\chi}) / k^{2} G(\bar{\chi})
$$

Now [1, p. 313],

$$
\begin{equation*}
|G(x)|^{2}=k . \tag{9}
\end{equation*}
$$

Since χ is even, from (9) we find that $G(\bar{\chi})=k / G(\chi)$. Hence, by Theorem 1 we conclude that

$$
\left.L(2, \chi)=\sum_{n=1}^{+\infty} \chi(n) n^{-2}=\pi^{2} G(\chi) M_{2} \bar{\chi}\right) / k^{3} .
$$

If we let $f(z)=1 / z^{2}$ in Theorem 2, an almost identical calculation gives for χ even,

$$
\sum_{n=1}^{+\infty}(-1)^{n} \chi(n) n^{-2}=\frac{\pi^{2}}{6 k^{3}} G(\chi)\left\{12 N_{2}(\bar{\chi})-k^{2} N_{0}(\bar{\chi})\right\},
$$

where

$$
N_{m}(\chi)=\sum_{j=1}^{[k / 2]} \chi(j) j^{m}
$$

Example 2. Let $f(z)=1 / z^{3}$. If χ is even, the left sides of (2) and (4) are both zero in this case. Thus, assume that χ is odd. By replacing j by $k-j$, it is easy to show that for χ odd, $M_{2}(\chi)=k M_{1}(\chi)$. Using this fact, by an elementary division of power series, we find that

$$
R\left\{\pi e^{-\pi i z} G(z, \bar{\chi}) / z^{3} G(\bar{\chi}) \sin (\pi z), 0\right\}=\frac{4 \pi^{3} i}{3 k^{3} G \overline{(\chi)}}\left\{k^{2} M_{1}(\bar{\chi})-M_{3}(\bar{\chi})\right\}
$$

Since χ is odd, from (9) we find that $G(\chi)=-k / G(\chi)$. Hence, by Theorem 1 we have shown that

$$
L(3, \chi)=\sum_{n=1}^{+\infty} \chi(n) n^{-3}=\frac{2 \pi^{3} i}{3 k^{4}} G(\chi)\left\{k^{2} M_{1}(\bar{\chi})-M_{3}(\bar{\chi})\right\}
$$

In a similar fashion we find that

$$
R\left\{\pi F(z, \bar{\chi}) / z^{3} G(\bar{\chi}) \sin (\pi z), 0\right\}=\frac{2 \pi^{3} i}{3 k^{3} G \overline{(\chi)}}\left\{k^{2} N_{1}(\bar{\chi})-4 N_{3} \overline{(\chi)}\right\}
$$

Thus, by Theorem 2,

$$
\sum_{n=1}^{+\infty}(-1)^{n} \chi(n) n^{-3}=\frac{\pi^{3} i}{3 k^{4}} G(\chi)\left\{k^{2} N_{1}(\bar{\chi})-4 N_{3} \overline{(\chi)}\right\}
$$

It is clear from the above examples that Theorem 1 enables us to calculate $L(n, \chi), n \geqq 2$, when $n \equiv \delta(\bmod 2)$. (In fact, a slight extension of Theorem 1 enables us to calculate $L(1, \chi)$ as well, if χ is odd.) For other general methods of calculating $L(n, \chi)$ when $n \equiv \delta(\bmod 2)$, see [2], [3] and [5].

Example 3. Let $f(z)=1 /\left(z^{2}+a^{2}\right), a>0$. If χ is odd, the left sides of (2) and (4) are clearly equal to 0 . Thus, assume that χ is even. A simple calculation yields

$$
R\left\{\pi e^{-\pi i z} G(z, \bar{\chi}) /\left(z^{2}+a^{2}\right) G(\bar{\chi}) \sin (\pi z), \pm a i\right\}=-\frac{\pi e^{ \pm \pi a} G(\pm a i, \bar{\chi})}{2 a G(\bar{\chi}) \sinh (\pi a)}
$$

After simplification, we find that Theorem 1 gives

$$
\sum_{n=1}^{+\infty} \frac{\chi(n)}{n^{2}+a^{2}}=\frac{\pi}{2 a G(\bar{\chi}) \sinh (\pi a)} \sum_{j=1}^{k-1} \bar{\chi}(j) \cosh (\pi a-2 \pi a j / k)
$$

Secondly,

$$
R\left\{\pi F(z, \bar{\chi}) /\left(z^{2}+a^{2}\right) G(\bar{\chi}) \sin (\pi z), \pm a i\right\}=-\frac{\pi F(\pm a i, \bar{\chi})}{2 a G(\bar{\chi}) \sinh (\pi a)}
$$

Thus, Theorem 2 yields upon a little simplification,

$$
\sum_{n=1}^{+\infty} \frac{(-1)^{n} \chi(n)}{n^{2}+a^{2}}=\frac{\pi}{a G(\bar{\chi}) \sinh (\pi a)} \sum_{j=1}^{[k / 2]} \bar{\chi}(j) \cosh (2 \pi j a / k)
$$

Observe that by letting a tend to 0 in the two results of Example 3, we obtain, respectively, the two results of Example 1.

Example 4. Let $f(z)=1 /(z+a)^{2}$, where a is not an integer. Upon calculating the residue at $z=-a$ and using Theorem 1, we find that
(10)

$$
\sum_{n=-\infty}^{+\infty} \chi(n)(n+a)^{-2}=\frac{\pi^{2} e^{\pi i a}}{G(\bar{\chi}) \sin (\pi a)} \sum_{j=1}^{k-1} \bar{\chi}(j) e-2 \pi i a j / k\{\cot (\pi a)-i+2 j i / k\}
$$

As a particular example, let $\chi(n)$ be the residue class chracter $(-4 \mid n)$. Then, $\chi(1)=1$, $\chi(3)=-1, \chi(2)=\chi(4)=0$, and $G(\chi)=2 i$. Replacing n by $2 n+1$, we find that (10) yields after some simplification

$$
\sum_{n=-\infty}^{+\infty} \frac{(-1)^{n}}{(2 n+1+a)^{2}}=\frac{\pi^{2}}{4 \sin (\pi a / 2)}\left\{1-\frac{1}{\cos ^{2}(\pi a / 2)}\right\}
$$

REFERENCES

1. Raymond Ayoub: An introduction to the analytic theory of numbers. Providence, 1963.
2. Raymond Ayoub: On L-functions. Monatsh. Math. 71 (1967), 193-202.
3. Bruce C. Berndt: The Voronoi summation formula. Procedings of a conference on the theory of arithmetic functions. (Kalamazoo, April, 1971), Berlin, 1971.
4. Einar Hille: Analytic function theory, vol. 1. Boston, 1959.
5. Heinrich-Wolfgang Leopoldt: Eine Verallgemeinerung der Bernoullischen Zahlen. Abh. Math. Sem. Univ. Hamburg 22 (1958), 131-140.
6. D. S. Mitrinović: Calculus of residues. Groningen, 1966.

University of Illinois at Urbana-Champaign
Department of Mathematics
Urbana, Illinois 61801

[^0]: * Presented January 15, 1972 by D. S. Mitrinović.

