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386. THE EVALUATION OF CHARACTER SERIES
BY CONTOUR INTEGRATION*

Bruce C. Berndt

A classical and well known application of the calculus of residues occurs
in the evaluation of series of the form,

+00

2:
f(n) or

n=-oo n=-QO

where f is a suitable meromorphic function. See the texts by HILLE [4, pp.
258-264] and MITRINOVIC[6, pp. 80-87] for good discussions of this topic.
In this paper we extend this theory by showing how to evaluate by contour
integration character series of the form,

+00

2: X(n)f(n) or
+00

2: (-I)nx(n)f(n),
n=-oo n=-QO

where X is a primitive character modulo k.
Let G (z, X) denote the GAussian sum,

k-I
G(z, X)=

2:
x(j)e21tiZHk,

j=1

and put G (X) = G (I, X). For primitive characters, we have the factorization
theorem [1, p. 312],

(1) G (n, X)= X(n) G (X),

where n is an integer. We also put

a=~{I-X( -I)}.
2

Finally, R {g (z), zo} denotes the residue of g (z) at z = zo'

* Presented January 15, 1972 by D. S. MITRINOVIC.
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Theorem 1. Let f be meromorphic in the extended complex plane. Suppose that
there exist positive numbers A and a> 1 such that If(z) I:;::;A Iz I-a, uniformly as

Izi tends to 00. Let S=S(f)={zp ... , zm} denote the set of all poles of f.
Then,

(2)
+00 m

2: x(n)f(n)= - 2: R{ne-TtiZf(z)G(z, x)/G(:X)sin(nz),zr}'
n=-oo r=1
nEES

Theorem 2. Let f and S be as given iil Theorem 1. Define

(3)
[k!2] [(k-I)!2]

F(z, x)= 2 xU)e2Ttizj!k+(-lY' 2:
xU)e-2TtiZj!k,

j-I j=1

where [x] denotes the greatest integer :;::;x. Then,

(4)
+00 m

2: (__l)n X(n)f(n) = - 2: R {nf(z) F (z, X)/G (X) sin (n z), zr}'
n=-oo r=1

nEES

Proof of Theorem 1. Let CN denote the square whose center is the origin
and whose sides are parallel to the rea.l and imlginary axes and are of length
2 N + 1, where N is an integer chosen large enough so th:.t S is conta.ined on
the interior of CN. By the residue theorem,

(5) 1

J
11"e-Ttiz f (z) G (z x) m . - -.

:- ~--=-:--~dz= 2: R{nrTtlZf(z)G(z,X)/G(x)sm(nz),zr}
211"1 G(x)sm(1I"z) r-ICN

+
N

2: R {n e-Ttizfez) G (z, x)jG (X) sin (n z), n}.
n=-N
nEES

If nEES, we have from (1)

(6) R {n rTtiz fez) G (z, x)/G (X) sin (n z), n} = f (n) G (n, x)/G (X) = fen) X (n).

By our choice of C
N' we see that there exists a positive constant M = M(X)

such that for z'= x + iy on CN,

k-I

. - 2
e2Tty

2:
XUt)xU2)e2Ttix(h-h)!k-2TtY(h+h)!k

I

e-:::
~11"

(;) x)
I

= -
h.h=1

sin2 (11"x) +sinh2(1I"y) ---
:;::;M.

Thus, the modulus of the integral on the left

4 (2 N + 1)
11" AM

( 1 )
a .

IG(x)1 N+2

side of (5) is less than

Hence, upon substituting (6) into (5) and then letting N to 00, we obtain (2).
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Proof of Theorem 2. Proceed as in the proof of Theorem 1. In this case
we have for nEES,

(7) R {nf(z) F(z, X)/G (X) sin (n z), n} = (
-

1)nfen) F (n, x)/G (X).

If we replace j by k - j in the second sum on the right side of (3), we
have by the periodicity of X,

(8) -
[k/2]- k-l

- -F (n, X)= L X(j) e21tinjlk+ ( -1)0 L X( - j) e2rtinjlk = G (n, X),
j=l j~I+[k/2]

since X( - j) = X( - 1) X(j). By an argument similar to that in the proof of
Theorem I, there exists a constant M = M (X) such that for z on eN,

I

:(z, X)

I

s:::M.
sm (n- z) -

proof, and using (8) in (7), we obtain (4)Proceeding as in the previous
upon letting N tend to 00.

The hypotheses on f in the above theorems may be relaxed somewhat.
We could prove a simiLr theorem if f were meromorphic only in the finitt::
complex plane. The growth conditions on f may also be weakened in some
cases. For exz.mple, see [4, pp. 260-263].

EXAMPLE1. Let fez) = 1/z2 in Theorem 1. If m is a positive integer, define

k-l
Mm (X) = L X (j)jm.

j~l

Observe that for this example the left side of (2) is 0 if X is odd.
that X is even. Replacing j by k-j, we have since X is even,

k-l k-l
M1(X)= L X(-j)(k-j)=- L X(-j)j~-M1(X).

j=l j=l

Thus, M1 (X) = O. A simple calculation shows that

Therefore, assume

R {n-e-rtiz G (z, X5/z2 G (X) sin (n- z), O} = -2n-2 M2(X)(k2 G (X).

Now [1, p. 313],
(9) I G(X)[2=k.

Since X is even, from (9) we find that G (X)= k/G (X). Hence, by Theorem 1 we con-
clude that

+00

L (2, X) = L X (n) n-2 = n-2G (X) MJX)/k3.

n=l

If we let f (z)
= 1/Z2 in Theorem 2, an almost identical calculation gives for X even,

where
[k/2]

Nm (X) = L X
(j)jm.

j=l
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EXAMPLE 2. Let j(z) = 1/z3. If X is even, the left sides of (2) and (4) are both zero in this
case. Thus, assume that X is odd. By replacing j by k-j, it is easy to show that for X odd,
M2 (X)~ kMj (X). Using this fact, by an elementary division of power series, we find that

- - 471"3i - -
R {71"e- 1tiz G (z, X)/ Z3 G (X) sin (71"z), O} ~ ---=-

{k2 Mj (X) - M3 (X)}.
3k3G(X)

Since X is odd, from (9) we find that G (X) ~ -k/G (X). Hence, by Theorem 1 we have shown that

+~ 2~i --L (3, X) =
")

X (n) n-3 =- G (X) {kZ Mj (X)-MJ (X)}.
n~l 3 k4

In a similar fashion we find that

Thus, by Theorem 2,

It is clear from the above examples that Theorem I enables us to cal-
culate L (n, :x.), n ~ 2, when n=8 (mod 2). (In fact, a slight extension of The-
orem I enables us to calculate L (1,:x.) as well, if :x.is odd.) For other general
methods of calculating L (n,:x.) when n=:=8(mod 2), see [2], [3] and [5].

EXAMPLE 3. Let j(z) = 1/(z2+ a2), a>O. If X is odd, the left sides of (2) and (4) are clearly
equal to O. Thus, assume that X is even. A simple calculation yields

7I"e:!:1taG (:1: ai, X)
R {7I"e-1tiz G (z, X)/(Z2 + a2) G (X) sin (71"z), :l::ai} =

2 aG (X) sinh (7t a)

After simplification, we find that Theorem 1 gives

+00 x(n) 71" k-l-

L ---z2= ~- L X(j)cosh(7ta-27taj/k).
n=l n +a 2aG(x) sinh (71"a) j=l

Secondly,

R {1tF(z, X)/(Z2+ a2) G(X) sin (7tz), :l::ai}-
71"F (::i:ai, X)

2aG (X) sinh (71"a)

Thus, Theorem 2 yields upon a little simplification,

y (-l)nX(n)
-

71" [~I
X (j) cosh (27I"ja/k).

n=l
n2+a2 aG(X)sinh(7I"a) j=l

Observe that by letting a tend to 0 in the two results of Example 3, we obtain, resp-
ectively, the two results of Example 1.

EXAMPLE 4. Let j(z) ~ l/(z + a)2, where a is not an integer. Upon calculating the residue at

z= -a and using Theorem 1, we find that

(10)
+~ 71"2e1tia k-l-

2: x(n)(n+a)-2-
-. 2:

x(j)e-21tiajlk{cot(7I"a)-i+2ji/k}.
n=-oo G(x)sm(7I"a)j=1
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As a particular example, let X(n) be the residue class chracter (-4In). Then, X(1) = 1,
)(3)=-1, X(2)=X(4)=0, and G(X)=2i. Replacing n by 2n+l, we find that (10) yields
after some simplification
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