384. AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS* Alexandru Lupas ${ }^{1)}$

In this paper we denote by F one of the following functionals which are well-defined by the relations

$$
F(f):=\frac{1}{b-a} \int_{a}^{b} f(x) d x, \quad F(f):=\frac{\int_{a}^{b} p(x) f(x) d x}{\int_{a}^{b} p(x) d x} \quad(a<b),
$$

$$
\begin{equation*}
F(f):=\sum_{k=0}^{n} p_{k} f\left(w_{k}\right) \quad\left(w_{k} \in[a, b] ; k=0,1, \ldots, n\right) \tag{1}
\end{equation*}
$$

where $p:[a, b] \rightarrow \mathbf{R}$ is a positive, integrable function on $[a, b]$. Likewise we suppose that $p_{k} \geqq 0(k=0,1, \ldots, n), \sum_{k=0}^{n} p_{k}=1$. Clearly, if F is in such a manner defined then $F(1)=1$. Sometimes instead of F we write F_{x} in order to put in evidence the corresponding variable. For instance

$$
F_{x}(f)=\frac{1}{b-a} \int^{b} f(x) d x \quad \text { and } \quad F_{x}(f(z))=f(z)
$$

Lemma. If $f, g:[a, b] \rightarrow \mathbf{R}$ are convex furctions on the interval $[a, b]$, then

$$
\begin{align*}
& F(f g)\left[F\left(e^{2}\right)-F(e)^{2}\right]-F(f) F(g) F\left(e^{2}\right) \tag{2}\\
& \quad \geqq F(e f) F(e g)-[F(f) F(e g)+F(g) F(e f)] \cdot F(e)
\end{align*}
$$

where $e(x)=x, x \in[a, b]$. If f or g is a linear function then the equality holds in (2).

Proof. Let $[x, y, z ; f]$ bs the divided difference of a certain function f. Under our conditions, for all distinct points x, y, z from $[a, b]$

$$
[x, y, z ; f] \cdot[x, y, z ; g] \geqq 0
$$

* Presented December 31, 1971 by D. S. Mitrinović.

1) This paper was partially supported by the Alexander von Humboldt Foundation.
which is equivalent with

$$
\begin{align*}
& {[(y-z) f(x)-(x-z) f(y)+(x-y) f(z)]} \tag{3}\\
& \quad \times[(y-z) g(x)-(x-z) g(y)+(x-y) g(z)] \geqq 0
\end{align*}
$$

with equality if one of the functions is linear.
We can now make use of the fact that F is a linear postitive functional; by arplying successively on (3) the functionals F_{x}, F_{y} and then F_{z}, we obtain the inequality (2). For instance if

$$
A=A(x, y, z, f, g):=(y-z)(x-y) f(x) g(z)
$$

then

$$
F_{x}(A)=[F(e f)-y F(f)] \cdot(y-z) g(z),
$$

$$
F_{z} F_{y} F_{x}(A)=F(e)[F(f) F(e g)+F(g) F(e f)]-F(e f) F(e g)-F\left(e^{2}\right) F(f) F(g)
$$

For the case in which F is defined by (1), in (3) we can take $x=w_{k}$, $y=w_{j}, \quad z=w_{s}(k, j, s=0,1, \ldots, n)$.

Theorem. If f, g are convex functions on the interval $[a, b]$, then

$$
\begin{align*}
& \int_{a}^{b} f(x) g(x) d x-\frac{1}{b-a}\left(\int_{a}^{b} f(x) d x\right)\left(\int_{a}^{b} g(x) d x\right) \tag{4}\\
& \quad \geqq \frac{12}{(b-a)^{3}}\left(\int_{a}^{b}\left(x-\frac{a+b}{2}\right) f(x) d x\right)\left(\int_{a}^{b}\left(x-\frac{a+b}{2}\right) g(x) d x\right)
\end{align*}
$$

with equality when at least one of the functions f, g is a linear function on $[a, b]$.
Proof. We select

$$
F(f)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Then

$$
F(e)=\frac{a+b}{2}, \quad F\left(e^{2}\right)=\frac{a^{2}+a b+b^{2}}{3}
$$

and from (2) we conclude with (4). It is clear that (2) may be written $\mathrm{fc} \mathbf{r}$ other forms of the functional F, which were previously mentioned.

Corollary. Let f, g are convex functions on $[a, b]$ and assume that

$$
g\left(\frac{a+b}{2}-x\right)=g\left(\frac{a+b}{2}+x\right), x \in\left[-\frac{b-a}{2}, \frac{b-a}{2}\right] .
$$

Then holds Chebyshev's inequality

$$
\left(\int_{a}^{b} f(x) d x\right)\left(\int_{a}^{b} g(x) d x\right) \leqq(b-a) \int^{b} f(x) g(x) d x
$$

Proof. In (4) we use the fact that

$$
\int_{a}^{b}\left(x-\frac{a+b}{2}\right) g(x) d x=0
$$

See [1, pp. 38-42] where there are other conditions listed under which Chebyshev's inequality is valid.

REFERENCE

1. D. S. Mitrinović (saradnik P. M. Vasić): Analitičke nejednakosti. Beograd, 1970; (translated as Analytic Inequalities. Grundlehren der mathematischen Wissenschaften, Bd. 165, Berlin-Heidelberg-New York 1970)

Institutul de calcul-Cluj al Academiei R. S. România and Mathematisches Institut A der Universitat-Stuttgart

COMMENT OF THE EDITORIAL COMMITTEE

F. V. Atkinson in his paper An inequality, These Publications № 357—№ 380 (1971), 5-6 proved the following result:

Let f and g be integrable functions on $[a, b]$ such that $f^{\prime \prime}>0, g^{\prime \prime}>0$ on $[a, b]$, and

$$
\int_{a}^{b}\left(x-\frac{1}{2}(a+b)\right) g(x) d x=0
$$

Then Chebyšev's inequality holds:

$$
\left(\int_{a}^{b} f(x) d x\right)\left(\int_{a}^{b} g(x) d x\right) \leqq(b-a) \int_{a}^{b} f(x) g(x) d x
$$

This result follows from Theorem 1 the above paper of LUPAŞ.

