383. A REMARK ON THE SCHWEITZER AND KANTOROVICH INEQUALITIES*

Alexandru Lupass ${ }^{1)}$

In 1914 P. Schweitzer proved the following theorem: If $\left\{a_{1}, \ldots, a_{n}\right\}$ is a set of real numbers with the property

$$
0<m \leqq a_{k} \leqq M \quad(k=1, \ldots, n)
$$

then

$$
\begin{equation*}
\left(\frac{1}{n} \sum_{k=1}^{n} a_{k}\right)\left(\frac{1}{n} \sum_{k=1}^{n} \frac{1}{a_{k}}\right) \leqq \frac{(M+m)^{2}}{4 M m} . \tag{1}
\end{equation*}
$$

In [4] (see also [3]) G. Pólya and G. Szegö have obtained the following generalization: If $\left\{A_{1}, \ldots, A_{n}\right\},\left\{B_{1}, \ldots, B_{n}\right\}$ are real numbers which verify

$$
0<m_{1} \leqq A_{k} \leqq M_{1}, \quad 0<m_{2} \leqq B_{k} \leqq M_{2} \quad(k=1, \ldots, n),
$$

then

$$
\begin{equation*}
\frac{\left(\sum_{k=1}^{n} A_{k}^{2}\right)\left(\sum_{k=1}^{n} B_{k}^{2}\right)}{\left(\sum_{k=1}^{n} A_{k} B_{k}\right)^{2}} \leqq\left(\frac{\sqrt{\frac{M_{1} M_{2}}{m_{1} m_{2}}}+\sqrt{\frac{m_{1} m_{2}}{M_{1} M_{2}}}}{2}\right)^{2} . \tag{2}
\end{equation*}
$$

Then they showed that the equality is attained in (2) if and only if the following conditions are simultaneously fulfilled:
I.

$$
\propto:=\frac{\frac{M_{1}}{m_{1}}}{\frac{M_{1}}{m_{1}}+\frac{M_{2}}{m_{2}}} n
$$

$$
\beta:=\frac{\frac{M_{2}}{m_{2}}}{\frac{M_{1}}{m_{1}}+\frac{M_{2}}{m_{2}}} n
$$

are natural numbers.

[^0]II. α of the numbers A_{1}, \ldots, A_{n} are equal to m_{1}, and β of these numbers equal to M_{1}, and if the corresponding numbers B_{k} are equal to M_{2} and m_{2} respectively.

If $A_{k}:=\sqrt{a_{k}}, \quad B_{k}:=\frac{1}{\sqrt{a_{k}}}, \quad M_{1}:=\sqrt{M}, \quad m_{1}:=\sqrt{m}, \quad M_{2}:=\frac{1}{\sqrt{m}}$, $m_{2}:=\frac{1}{\sqrt{M}}$, then (2) is the same inequality as (1). On the other hand in this case

$$
\alpha=\beta=\frac{n}{2}
$$

such that for $n=2 p+1$ the SChweitzer's result does not give the best bound, taking into account that in (1) the equality is not attained (except some trivial situations as : $\left.m=a_{k}=M=1, k=1, \ldots, n\right)$.

The object of this note is to improve Schweitzer's inequality.
Theorem 1. If $\left\{a_{1}, \ldots, a_{n}\right\}$ is a set of real numbers with

$$
0<m \leqq a_{k} \leqq M \quad(k=1, \ldots n),
$$

then

$$
\left(\sum_{k=1}^{n} a_{k}\right)\left(\sum_{k=1}^{n} \frac{1}{a_{k}}\right) \leqq \frac{\left(\left[\frac{n}{2}\right] M+\left[\frac{n+1}{2}\right] m\right)\left(\left[\frac{n+1}{2}\right] M+\left[\frac{n}{2}\right] m\right)}{M m}
$$

where the symbol'.] denotes the integral part.
The equality is attained if $\left[\frac{n}{2}\right]$ of the numbers a_{1}, \ldots, a_{n} are equal to m (or to M) and if $\left[\frac{n+1}{2}\right]$ of these numbers are equal to M (or to m).

Proof. It is stated in [1] (see also 3.2.26, page 205 in [3]) that if $\left\{A_{1}, \ldots, A_{n}\right\},\left\{B_{1}, \ldots, B_{n}\right\}$ are real numbers with

$$
m_{1} \leqq A_{k} \leqq M_{1}, \quad m_{2} \leqq B_{k} \leqq M_{2} \quad(k=1, \ldots, n),
$$

then

$$
\left|\sum_{k=1}^{n} A_{k} B_{k}-\frac{1}{n} \sum_{k=1}^{n} A_{k} \sum_{k=1}^{n} B_{k}\right| \leqq\left(M_{1}-m_{1}\right)\left(M_{2}-m_{2}\right) w(n)
$$

where

$$
w(n)= \begin{cases}\frac{n}{4} & \text { for } n \text { even } \\ \frac{n^{2}-1}{4 n} & \text { for } n \text { odd }\end{cases}
$$

If we take

$$
A_{k}:=a_{k}>0, \quad B_{k}:=\frac{1}{a_{k}}, \quad M_{1}:=M, \quad m_{1}=m, \quad M_{2}:=\frac{1}{m}, \quad m_{2}:=\frac{1}{M},
$$

then from the above inequality we obtain

$$
\left(\sum_{k=1}^{n} a_{k}\right)\left(\sum_{k=1}^{n} \frac{1}{a_{k}}\right) \leqq \frac{(M+m)^{2}}{4 M m} n^{2}-g(n)
$$

where

$$
g(n)=\left\{\begin{array}{cl}
0, & \text { for } n \text { even } \\
\frac{(M-m)^{2}}{4 M m} & \text { for } n \text { odd. }
\end{array}\right.
$$

An easy computation shows that

$$
\frac{(M+m)^{2}}{4 M m} n^{2}-g(n)=\frac{\left(\left[\frac{n}{2}\right] M+\left[\frac{n+1}{2}\right] m\right)\left(\left[\frac{n+1}{2}\right] M+\left[\frac{n}{2}\right] m\right)}{M m}
$$

and the theorem is proved.
In [2] P. Henrici showed that the Kantorovich's inequality

$$
\begin{gathered}
\left(\sum_{k=1}^{n} a_{k} p_{k}\right)\left(\sum_{k=1}^{n} \frac{1}{a_{k}} p_{k}\right) \leqq \frac{(M+m)^{2}}{4 M m} \\
0<m \leqq a_{k} \leqq M, \quad p_{k} \geqq 0, \quad \sum_{k=1}^{n} p_{k}=1 \quad(k=1, \ldots, n),
\end{gathered}
$$

is a simple consequence of Schweitzer's inequality (1).
By using the same method of proof which is described in [2], from the above theorem we obtain the following improvement of Kantorovich's result.

Theorem 2. Let $\left\{p_{1}, \ldots, p_{n}\right\}$ and $\left\{a_{1}, \ldots, a_{n}\right\}$ be real numbers which verify

$$
p_{k} \geqq 0, \quad \sum_{k=1}^{n} p_{k}=1, \quad 0<m \leqq a_{k} \leqq M \quad(k=1, \ldots, n) .
$$

Then

$$
\left(\sum_{k=1}^{n} a_{k} p_{k}\right)\left(\sum_{k=1}^{n} \frac{1}{a_{k}} p_{k}\right) \leqq \frac{\left(\left[\frac{n}{2}\right] M+\left[\frac{n+1}{2}\right] m\right)\left(\left[\frac{n+1}{2}\right] M+\left[\frac{n}{2}\right] m\right)}{M m n^{2}}
$$

REFERENCES

1. M. Biernacki, H. Pidek and C. Ryll-Nardzewski: Sur une inégalité entre des intégrales définies. Annales Univ. Mariae Curie-Skłodowska A 4 (1950), 1-4.
2. P. Henrici: Two remarks on the Kantorovich inequality. Amer. Math. Monthly 68 (1961), 904-906.
3. D. S. Mitrinović (In cooperation with P. M. Vasić): Analytic Inequalities. Grundlehren der mathematischen Wissenschaften Bd. 165, Berlin-Heidelberg - New York, 1970.
4. G. Pólya and G. Szegö: Aufgaben und Lehrsätze aus der Analysis, vol. I. Berlin 1925, pag. 57.
5. P. SChweitzer: An inequality concerning the arithmetic mean. Math. és phys. lapok 23 (1914), 257-261.

Institutul de calcul-Cluj al Academici R. S. România and Mathematisches Institut A der Universitat--Stuttgart

[^0]: * Presented November 15, 1971 by D. S. Mitrinović.
 ${ }^{1)}$ This paper was partially supported by the Alexander von Humboldt Foundation.

