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365. BOUNDS FOR ORDER STATISTICS*
A. V. Boyd

By using a result of QUESENBERRY and DAvID [2], HAwkINs [1] has ob-
tained bounds on the order statistics for an arbitrary statistical distribution. His
results are equivalent to the following:

Theorem. If 3 x;=0 and 3 x?=1 where x,<x,< .- =x, then
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Proof. The following alternative proof is independent of statistical ideas.

Define 6 by > x;=mx,—0 so that 6=0.
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Hence if x,,,<—\/nn_mm and 0=0 then
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Hence x,, cannot be less than — for m=1 to n—1.

It can, however, attain this lower bound, as is seen by taking
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To show that the greatest lower bound for x, is given by a different
expression in the case m=n suppose that exactly r of the x’s are greater than 0.
Then r=n—1 and x,=x,< - 5%, ,s0<x, , =X, ,,,< =X,
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Hence x, cannot be less than VAm=1) ’ but this lower bound for x, is at-
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For upper bounds on the x’s we first have, by symmetry, that the m?
largest of them, x, , _,, must satisfy
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and putting m=n+1—j gives the stated inequalities for x;.

REFERENCES

1. D. M. HAWKINS; On the bounds of the range of order statistics. To appear in Jour.
Amer. Stat. Assn. 1971.

2. C. P. QuesenBerrY and H. A. DAvID: Some tests for outliers. Biometrika 48 (1961),
379—390.

Department of Statistics
University of Witwatersrand
Johannesburg, South Africa



