PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU publications de la faculté d’Electrotechnique de l'université a belgrade

SERIJA: MATEMATIKAIFIZIKA-SERIE: MATHEMATIQUESETPHYSIQUE N2 357 - No 380 (1971)

364. ON SOME PROPERTIES OF FUNCTION $\pi(x)^{*}$

Christo Karanikolov

The well known Landau hypothesis [1] asserts that the following inequality (1)

$$
\pi(2 x) \leqq 2 \pi(x)
$$

holds for every real number $x \geqq 3$.
Recently J. Roser and L. Schoenfeld [2] have proved the truth of the LaNDAU conjecture, by demonstrating that the inequality

$$
\pi(2 x)<2 \pi(x)
$$

holds for all $x \geqq 347$.
Therefore, the LANDAU hypothesis has become a theorem for $x \geqq 347$.
Now we are going to generalize this LANDAU theorem and to prove some other theorems. With that aim we shall establish the following:

Theorem 1. Let k be any real number bigger or equal to $\sqrt{e}\left(\approx 1.65=\frac{33}{20}\right)$, i.e.

$$
\begin{equation*}
k \geqq \sqrt{e} \quad(e=2.718281828 \ldots) . \tag{2}
\end{equation*}
$$

Then the following inequality (more general than (1'))

$$
\begin{equation*}
\pi(k x)<k \pi(x) \tag{3}
\end{equation*}
$$

for every $x \geqq 347$ holds.
Proof. Owing to J. Rosser, L. Schoenfeld and Yohe [3] inequalities:

$$
\frac{x}{\log x-\frac{5}{4}}>\pi(x)>\frac{x}{\log x-\frac{3}{4}} \quad(\forall x \geqq 347)
$$

we obtain directly:

$$
\frac{k x}{\log x-\frac{5}{4}}>k \pi(x)>\frac{k x}{\log x-\frac{3}{4}}
$$

and

$$
\frac{k x}{\log x+\log k-\frac{5}{4}}>\pi(k x)>\frac{k x}{\log x+\log k-\frac{3}{4}}
$$

[^0]or
$$
k \pi(x)>\frac{k x}{\log x-\frac{3}{4}} \geqq \frac{k x}{\log x+\left(\log k-\frac{1}{2}\right)-\frac{3}{4}}>\pi(k x),
$$
since-by condition (See (2))-we have
$$
\log k-\frac{1}{2} \geqq 0
$$

So inequality (3) is proved completely for every $x \geqq 347$ and for every $k \geqq \sqrt{e}$!
Evidently, Landau inequality (1') is a particular case of (3), because it can be obtained from (3) for $k=2(>\sqrt{e})$.
Theorem 2. Let k be any positive number $\leqq \frac{1}{\sqrt{e}}$; then inequality

$$
\pi(k x)>k \pi(x)
$$

(which is absolutely contrary of (3)) for all x with $k x \geqq 347$ holds.
Proof. The proof is quite similar to that of theorem 1.
Theorem 3. If x designates an arbitrary real number $\geqq 347$ and if $a \geqq \sqrt[4]{e}$, then we shall have either

$$
\begin{equation*}
\pi(a x)<a \pi(x) \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\pi\left(a^{2} x\right)<a \pi(a x) \tag{5}
\end{equation*}
$$

Proof. If we suppose that inequality (4) does not hold, then it follows that

$$
\pi(a x) \geqq a \pi(x),
$$

or

$$
\begin{equation*}
a \pi(a x) \geqq a^{2} \pi(x) . \tag{6}
\end{equation*}
$$

On the other hand, if we fix $k=a^{2}(\geqq \sqrt{e})$, inequality (3) will give

$$
\begin{equation*}
a^{2} \pi(x)>\pi\left(a^{2} x\right) \tag{7}
\end{equation*}
$$

Now owing to (6) and (7) we come to the conclusion that

$$
a \pi(a x)>\pi\left(a^{2} x\right)
$$

So theorem 3 is proved.

REFERENCES

1. D. S. Mitrinović: Analitičke nejednakosti. Beograd 1970.
2. J. Roser and L. Schoenfeld: Abstract of brief scientific communications to the International Congress in Moscow 1966, Section 3, p. 8.
3. J. Roser, L. Schoenfeld and Yohe: Proceedings of the 1968 International Federation for Information Processing Congress.

[^0]: * Received in revised form May 10, 1971, and presented by D. S. Mrrrinović.

