PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU publications de la faculté d'Electrotechnique de l'université a belgrade

360. SOME INEQUALITIES FOR THE TRIANGLE*

L. Carlitz

1. Let $A B C$ be an arbitrary triangle and let P denote a point in the interior of $A B C$. Let D, E, F denote the feet of the perpendiculars from P to $B C$, $C A, A B$, respectively. Let a, b, c denote the sides and α, β, γ the angles of $A B C$. Following the notation of [1], put

$$
\begin{aligned}
R_{1}=P A, & R_{2} & =P B, & R_{3}=P C, \\
r_{1} & =P D, & r_{2} & =P E,
\end{aligned} r r_{3}=P F .
$$

Let K denote the area of $A B C$ and K_{0} the area of $D E F$. We shall show first that

$$
\begin{equation*}
K_{0} \leqq \frac{1}{4} K, \tag{1.1}
\end{equation*}
$$

with equality if and only if P is the circumcenter of $A B C$.
Proof of (1.1). Clearly

$$
\begin{equation*}
2 K_{0}=a r_{1}+b r_{2}+c r_{3} \tag{1.2}
\end{equation*}
$$

On the other hand, since

$$
\Varangle E P F=180^{\circ}-\alpha,
$$

it follows that

$$
\text { area } E P F=\frac{1}{2} r_{2} r_{3} \sin \alpha
$$

Similarly

$$
\text { area } F P D=\frac{1}{2} r_{3} r_{1} \sin \beta, \quad \text { area } D P E=r_{1} r_{2} \sin \gamma,
$$

so that

$$
\begin{equation*}
2 K_{0}=r_{2} r_{3} \sin a+r_{3} r_{1} \sin \beta+r_{1} r_{2} \sin \gamma . \tag{1.3}
\end{equation*}
$$

Since

$$
a=2 R \sin a, \quad b=2 R \sin \beta, \quad c=2 R \sin \gamma,
$$

where R is the circumradius of $A B C$, (1.3) is equivalent to

$$
\begin{equation*}
4 K_{0} R=a r_{2} r_{3}+b r_{3} r_{1}+c r_{1} r_{2} . \tag{1.4}
\end{equation*}
$$

*Presented June 8, 1971 by D. S. Mitrinović.

It follows that

$$
\begin{aligned}
4 c K_{0} R & =c^{2} r_{1} r_{2}+\left(a r_{2}+b r_{1}\right) c r_{3} \\
& =c^{2} r_{1} r_{2}+\left(a r_{2}+b r_{1}\right)\left(2 K-a r_{1}-b r_{2}\right) \\
& =2\left(a r_{2}+b r_{1}\right) K-\left[a b r_{1}^{2}+a b r_{2}^{2}+\left(a^{2}+b^{2}-c^{2}\right) r_{1} r_{2}\right] \\
& =2\left(a r_{2}+b r_{1}\right) K-a b\left(r_{1}^{2}+r_{2}^{2}+2 r_{1} r_{2} \cos \gamma\right) \\
& =2\left(a r_{2}+b r_{1}\right) K-a b\left[\left(r_{1}+r_{2} \cos \gamma\right)^{2}-r_{2}^{2} \sin ^{2} \gamma\right] \\
& =a b\left(\lambda^{2}+\mu^{2}\right)-a b\left(r_{1}+r_{2} \cos \gamma-\lambda\right)^{2}-a b\left(r_{2} \sin \gamma-\mu\right)^{2}
\end{aligned}
$$

where

$$
a b \lambda=b K
$$

$$
a b \lambda \cos \gamma+a b \mu \sin \gamma=a K
$$

It is easily verified that

$$
\begin{aligned}
& \lambda=\frac{K}{a}=\frac{b c}{4 R}=R \sin \beta \sin \gamma, \\
& \mu=\frac{K}{a b \sin \gamma}(a-b \cos \gamma)=\frac{c}{4 R \sin \gamma}(a-b \cos \gamma) \\
& =\frac{1}{2}(a-b \cos \gamma)=\frac{1}{2} c \cos \gamma=R \cos \beta \sin \gamma, \\
& \quad \lambda^{2}+\mu^{2}=R^{2} \sin ^{2} \gamma=\frac{1}{4} c^{2} .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
4 c K_{0} R \leqq \frac{1}{4} a b c^{2} \tag{1.5}
\end{equation*}
$$

which evidently proves (1.1). Moreover we have equality if and only if

$$
\left\{\begin{aligned}
r_{1}+r_{2} \cos \gamma & =R \sin \beta \sin \gamma, \\
r_{2} \sin \gamma & =R \cos \beta \sin \gamma .
\end{aligned}\right.
$$

This implies

$$
r_{1}=R \cos \alpha, \quad r_{2}=R \cos \beta, \quad r_{3}=R \cos \gamma,
$$

so that P is the circumcenter of $A B C$.
2. In the next place consider

$$
\begin{aligned}
& \left(a r_{1}+b r_{2}+c r_{3}\right)\left(\frac{a}{r_{1}}+\frac{b}{r_{2}}+\frac{c}{r_{3}}\right) \\
& \quad=a^{2}+b^{2}+c^{2}+b c\left(\frac{r_{2}}{r_{3}}+\frac{r_{3}}{r_{1}}\right)+c a\left(\frac{r_{3}}{r_{1}}+\frac{r_{1}}{r_{3}}\right)+a b\left(\frac{r_{1}}{r_{2}}+\frac{r_{2}}{r_{1}}\right) \\
& \quad \geqq a^{2}+b^{2}+c^{2}+2 b c+2 c a+2 a b \\
& \quad=(a+b+c)^{2}
\end{aligned}
$$

with equality if and only if $r_{1}=r_{2}=r_{3}$. Thus

$$
\begin{equation*}
\left(a r_{1}+b r_{2}+c r_{3}\right)\left(a r_{2} r_{3}+b r_{3} r_{1}+c r_{1} r_{2}\right) \geqq(a+b+c)^{2} . r_{1} r_{2} r_{3}, \tag{2.1}
\end{equation*}
$$

with equality if and only if P is the incenter of $A B C$. Hence by (1.2) and (1.4) we have

$$
\begin{equation*}
2 K K_{0} R \geqq s^{2} r_{1} r_{2} r_{3}, \tag{2.2}
\end{equation*}
$$

with equality if and only if P is the incenter of $A B C$.
The sides of $D E F$ are given by

$$
\begin{equation*}
E F=R_{1} \sin \alpha, \quad F D=R_{2} \sin \beta, \quad D E=R_{3} \sin \gamma \tag{2.3}
\end{equation*}
$$

Applying the relation

$$
\begin{equation*}
a b c=4 K R \tag{2.4}
\end{equation*}
$$

to the triangle $D E F$ we get

$$
R_{1} R_{2} R_{3} \sin \alpha \sin \beta \sin \gamma=4 K_{0} R_{0},
$$

where R_{0} is the circumradius of $D E F$. It follows that

$$
\begin{equation*}
a b c R_{1} R_{2} R_{3}=32 K_{0} R_{0} R^{3} . \tag{2.5}
\end{equation*}
$$

Applying (2.4) again, (2.5) becomes

$$
\begin{equation*}
R_{1} R_{2} R_{3} K=8 K_{0} R_{0} R^{2} . \tag{2.6}
\end{equation*}
$$

If we now multiply (2.6) by K and make use of (2.2), we get

$$
\begin{equation*}
R_{1} R_{2} R_{3} K^{2} \geqq 4 s^{2} R_{0} R r_{1} r_{2} r_{3} \tag{2.7}
\end{equation*}
$$

Since $K=r s$, where r is the radius of the incircle of $A B C$, (2.7) reduces to

$$
\begin{equation*}
R_{1} R_{2} R_{3} r^{2} \geqq 4 R_{0} R r_{1} r_{2} r_{3} \tag{2.8}
\end{equation*}
$$

with equality if and only if P is the incenter of $A B C$.
If we multiply (2.6) by $2 K_{0} R$ and then use (2.2), we get
so that

$$
\begin{equation*}
16 K_{0}^{2} R_{0} R^{3} \geqq R_{1} R_{2} R_{3} r_{1} r_{2} r_{3} s^{2} \tag{2.9}
\end{equation*}
$$

with equality if and only if P is the incenter of $A B C$. Since [1, 12.26]

$$
\begin{equation*}
R_{1} R_{2} R_{3} \geqq 8 r_{1} r_{2} r_{3}, \tag{2.10}
\end{equation*}
$$

with equality if and only if $A B C$ is equilateral and P is the incenter, (2.9) yields

$$
\begin{equation*}
2 K_{0}{ }^{2} R_{0} R^{3} \geqq\left(r_{1} r_{2} r_{3} s\right)^{2} \tag{2.11}
\end{equation*}
$$

with equality if and only if $A B C$ is equilateral and P is the incenter.
If we rewrite (1.1) in the form

$$
\frac{4 R_{1} R_{2} R_{3} \sin \alpha \sin \beta \sin \gamma}{R_{0}} \leqq \frac{a b c}{R},
$$

it is evident that we get the inequality

$$
\begin{equation*}
R_{1} R_{2} R_{3} \leqq 2 R_{0} R^{2} \tag{2.12}
\end{equation*}
$$

with equality if and only if P is the circumcenter of $A B C$.

Combining (2.12) with (2.8), we get
so that

$$
4 r_{1} r_{2} r_{3} R_{0} R \leqq 2 r^{2} R_{0} R^{2},
$$

$$
\begin{equation*}
2 r_{1} r_{2} r_{3} \leqq r^{2} R \tag{2.13}
\end{equation*}
$$

with equality if and only if $A B C$ is equilateral and P is the incenter.
Again, by (2.9) and (1.1),
which is equivalent to

$$
R_{1} R_{2} R_{3} r_{1} r_{2} r_{3} s^{2} \leqq K^{2} R_{0} R^{3},
$$

with equality if and only if $A B C$ is equilateral and P is the incenter.
Returning to (1.2), since

$$
2 K=a r_{1}+b r_{2}+c r_{3} \geqq 3\left(a b c r_{1} r_{2} r_{3}\right)^{\frac{1}{3}}
$$

we get
Therefore [1, 12.29]

$$
\begin{equation*}
8 K^{3} \geqq 27 a b c r_{1} r_{2} r_{3} . \tag{2.15}
\end{equation*}
$$

with equality if and only if P is the centroid of $A B C$.
Multiplying (2.13) and (2.15) we get

$$
27\left(r_{1} r_{2} r_{3}\right)^{2} \leqq r^{2} K^{2}
$$

so that

$$
\begin{equation*}
3 \sqrt{3} r_{1} r_{2} r_{3} \leqq r K=r^{2} s, \tag{2.16}
\end{equation*}
$$

with equality if and only if $A B C$ is equilateral and P is the incenter.
We remark that (2.15) is stronger than (2.13). This is a consequence of the inequality $[1,5.3]$

$$
\begin{equation*}
27 R^{2} \geqq 4 s^{2} \tag{2.17}
\end{equation*}
$$

By (2.15) and (2.17)

$$
2 K^{2} R \geqq 27 r_{1} r_{2} r_{3} R^{2} \geqq 4 r_{1} r_{2} r_{3} s^{2},
$$

which evidently implies (2.13).

REFERENCE

1. O. Bottema, R. Ž. Đordević, R. R. Janić, D. S. Mitrinović, P. M. Vasić: Geometric Inequalities. Groningen. 1969.

Duke University
Department of Mathematics
Durham, N. C. 27706, USA

