> F. V. Atkinson

The following is proved:
Let $p(x), q(x) \in C^{\prime \prime}[a, b]$, and let $p^{\prime \prime}>0, q^{\prime \prime}>0$, and also

$$
\begin{equation*}
\int_{a}^{b}\left(x-\frac{1}{2}(a+b)\right) q(x) \mathrm{d} x=0 \tag{1}
\end{equation*}
$$

Then

$$
\begin{equation*}
(b-a) \int_{a}^{b} p q \mathrm{~d} x>\int_{a}^{b} p \mathrm{~d} x \int_{a}^{b} q \mathrm{~d} x . \tag{2}
\end{equation*}
$$

Let us write

$$
\begin{equation*}
m=(b-a)^{-1} \int_{a}^{b} q \mathrm{~d} x \tag{3}
\end{equation*}
$$

so that what we have to prove may be written as

$$
\begin{equation*}
\int_{a}^{b} p(x)(q(x)-m) \mathrm{d} x>0 \tag{4}
\end{equation*}
$$

We write further

$$
\begin{equation*}
q_{1}(x)=\int_{a}^{x}(q(t)-m) \mathrm{d} t, \quad q_{2}(x)=\int_{a}^{x} q_{1}(t) \mathrm{d} t . \tag{5}
\end{equation*}
$$

Integrating the left of (4) by parts twice we get

$$
\begin{equation*}
\left.\left(p q_{1}-p^{\prime} q_{2}\right)\right|_{a} ^{b}+\int_{a}^{b} p^{\prime \prime} q_{2} \mathrm{~d} x \tag{6}
\end{equation*}
$$

Here $q_{1}(a)=q_{2}(a)=0$, and $q_{1}(b)=0$ since m is the mean-value of q. Thus (6) becomes

$$
\begin{equation*}
-p^{\prime}(b) q_{2}(b)+\int_{a}^{b} p^{\prime \prime} q_{2} \mathrm{~d} x \tag{7}
\end{equation*}
$$

* Received April 10, 1971, and presented May 15, 1971 by D. S. Mitrinović.

Thus to complete the proof it will be sufficient to show that

$$
\begin{gather*}
q_{2}(b)=0 \tag{8}\\
q_{2}(x)>0, \quad a<x<b . \tag{9}
\end{gather*}
$$

Concerning (8), we have

$$
\begin{aligned}
q_{2}(b) & =\int_{a}^{b} \mathrm{~d} x \int_{a}^{x}(q(t)-m) \mathrm{d} t=\int_{a}^{b}(b-t)(q(t)-m) \mathrm{d} t \\
& =\int_{a}^{b}\left(\frac{1}{2}(a+b)-t\right)(q(t)-m) \mathrm{d} t+\frac{1}{2}(b-a) \int_{a}^{b}(q(t)-m) \mathrm{d} t
\end{aligned}
$$

and here the first integral vanishes in view of (1), and the second by (3).
It remains to prove (9). We note first that since $q^{\prime \prime}>0, q(x)-m$ can have at most two zeros in $a<x<b$; by (3), it must have at least one zero in this open interval. By Rolle's theorem, and the facts that $q_{1}(a)=q_{1}(b)=0$, we see that $q_{1}(x)$ can have at most one zero in $a<x<b$. Again by Rolle's theorem, and the facts that $q_{2}(a)=q_{2}(b)=0$, we have that $q_{2}(x)$ can have no zero in $a<x<b$. Thus the sign of $q_{2}(x)$ is fixed in $a<x<b$. To establish (9) we have to show that it is positive for at least one x.

The above argument, using Rolle's theorem, shows that $q_{1}=q_{2}{ }^{\prime}$ must have at least one zero in $a<x<b$, and so exactly one zero. Likewise, $q-m=q_{1}{ }^{\prime}$ has at least two zeros, and so exactly two zeros in $a<x<b$. Since $(q-m)^{\prime \prime}>0$, it must start positive, then become negative, and then positive, as x goes from a to b. Thus $q_{1}(x), q_{2}(x)$, the successive integrals of $q(x)-m$, must also be positive for $x>a$ and close to a. Thus the constant sign of q_{2} in $a<x<b$ is positive, and this completes the proof.

Department of Mathematics
University of Toronto
Toronto, Ont., Canada

