PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU publications de la faculté d'Electrotechnique de l'université a belgrade

SERIJA: MATEMATIKAIFIZIKA-SERIE: MATHEMATIQUESETPHYSIQUE
№ 357 - № 380 (1971)
358.

A VOLUME INEQUALITY FOR SIMPLEXES*
Murray S. Klamkin
If D, E, F denote the points in which the angles bisectors of a triangle $A B C$ meet the opposite sides, then Gridasov [1] has shown that the area of DEF is at most one quarter the area of $A B C$ with equality only if $A B C$ is equilateral. We extend this result to the following:

Theorem. If $V_{0}, V_{1}, \ldots, V_{n}$ denote the $n+1$ vertices of an n-dimensional simplex S in E^{n} and if $V_{0}^{\prime}, V_{1}^{\prime}, \ldots, V_{n}^{\prime}$ denote the $n+1$ vertices of an inscribed simplex S^{\prime} such that the cevians $V_{i} V_{i}^{\prime}(i=0,1, \ldots, n)$ are concurrent within S, then

$$
\text { Vol. } S \geqq n^{n} \text { Vol. } S^{\prime}
$$

with equality, if and only if, the point of concurrency of the cevians is the centroid of S.

Proof. Let $V_{i}(i=1, \ldots, n)$ denote n linearly independent vectors from V_{0} to V_{i} and let

$$
P=\overrightarrow{V_{0} P}=\lambda_{1} V_{1}+\cdots+\lambda_{n} V_{n}
$$

where P denotes the point of concurrency so that

$$
\lambda_{i} \geqq 0(i=1, \ldots, n), \sum_{i=1}^{n} \lambda_{i}<1 .
$$

Then,

$$
\begin{aligned}
& V_{i}^{\prime}=V_{i}+\left(P-V_{i}\right) /\left(1-\lambda_{i}\right) \quad(i=1, \ldots, n), \\
& V_{0}^{\prime}=P /\left(1-\lambda_{0}\right)
\end{aligned}
$$

where $1-\lambda_{0}=\lambda_{1}+\cdots+\lambda_{n}$. If the rectangular components of V_{i} are $a_{i j}(j=1$, \ldots, n), the volume of S is given by

$$
\text { Vol. } S=\left[V_{1}, \ldots, V_{n}\right] / n!=\frac{1}{n!}\left|\begin{array}{llll}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & & a_{2 n} \\
\vdots & & & \\
a_{n 1} & a_{n 2} & & a_{n n}
\end{array}\right| .
$$

* Presented June 1, 1971 by D. S. Mitrinović.

To express Vol. S^{\prime} in terms of Vol. S, we first note that a determinant is a linear function of each of its elements. Whence,

$$
\text { Vol. } S^{\prime}=\left[r_{1} \boldsymbol{V}_{1}+s_{1} \boldsymbol{P}, \ldots, r_{n} \boldsymbol{V}_{n}+s_{n} \boldsymbol{P}\right]
$$

or

$$
\text { Vol. } S^{\prime}=\{\text { Vol. } S\}\left\{\prod_{i=1}^{n} r_{i}\right\}\left\{1+\frac{s_{1} \lambda_{1}}{r_{1}}+\cdots+\frac{s_{n} \lambda_{n}}{r_{n}}\right\}
$$

where

$$
r_{i}=\frac{\lambda_{i}}{1-\lambda_{i}}, \quad s_{i}=\frac{\lambda_{0}-\lambda_{i}}{\left(1-\lambda_{i}\right)\left(1-\lambda_{0}\right)} .
$$

It is to be also noted that in setting up the determinant for the volume S^{\prime}, we have taken V_{0}^{\prime} to be the new origin. Simplifying the above,

$$
\text { Vol. } S^{\prime}=\frac{n \lambda_{0} \lambda_{1} \cdots \lambda_{n}}{\left(1-\lambda_{0}\right)\left(1-\lambda_{1}\right) \cdots\left(1-\lambda_{n}\right)} \text { Vol. } S .
$$

The maximum of the λ expression subject to $\sum_{i=0}^{n} \lambda_{i}=1$ is easily found by the A. M.-G. M. theorem [2]:

$$
\frac{1-\lambda_{i}}{n}=\frac{\lambda_{0}+\lambda_{1}+\cdots+\lambda_{n}-\lambda_{i}}{n} \geqq\left\{\frac{\lambda_{0} \lambda_{1} \cdots \lambda_{n}}{\lambda_{i}}\right\}^{1 / n}
$$

Thus

$$
\prod_{i=0}^{n}\left(1-\lambda_{i}\right) \geqq n^{n+1} \lambda_{0} \lambda_{1} \cdots \lambda_{n}
$$

with equality if $\lambda_{i}=1 /(n+1)$. Finally,

$$
\text { Vol. } S \geqq n^{n} \text { Vol. } S^{\prime}
$$

with equality only if P is the centroid.
For the result of Gridasov, $n=2$. And for equality, the angle bisectors must coincide with the medians which implies that the triangle must be equilateral.

REFERENCES

1. O. Bottema, R. Ž. Đordević, R. R. Janić, D. S. Mitrinović, P. M. Vasić: Geometric Inequalities. Groningen 1969, p. 87, 9.8.
2. M. S. Klamkin, D. J. Newman: Extensions of the Weierstrass Product Inequalities. Math. Mag. 43 (1970), 137-141.

Scientific Research Staff,

Ford Motor Company,
Dearborn, Michigan

