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Dragos§ M. Cvetkovié

INTRODUCTION

Problems involving graphs are diverse in their outher form, as well as in
their essence. The graph theory has not as yet developed general methods which
would enable one to solve a larger number of problems by a unique method.
Many problems are still unsolved, and for some of them one does not know,
even approximately, in which direction to look for the solution. Special methods
are developed for different classes of problems.

In this paper we describe a set of procedures for investigations of graphs.
Since it is based on the spectrum of the adjacency matrix of a graph, we suggest
the name spectral method.

The spectral method is a general method, since it can be applied to a
variety of unrelated problems. However, as we shall see later, it is not the general
method, i.e. it cannot provide an answer to all questions that can be posed in
connection with a given graph. Naturally, this method will give the best results in
connection with other methods.

The spectral method belongs to a group of algebraic methods in the graph
theory. The idea is to determine the structural properties of graphs by means of
an algebraic invariant of graphs — the spectrum of a graph. As a starting point
one uses the theorems known in matrix theory.

We shall define more precisely the notion of the spectral method.

The following concepts: vertex, edge, subgraph, connectedness, chromatic
number, etc. which appeared as a result of the representation of a graph by a
figure, are associated with graphs. We shall say that a proposition which involves
only such concepts describes the structure of a graph.

For the purposes of investigations, graphs can be brought into connection
with other mathematical objects. One such object is the spectrum of a graph.
The spectrum of a graph, in a wider sense, will mean the spectrum of an arbitrary
square matrix which is, in a given way, associated with a graph. Propositions

* This paper represents an abridged version of the Doctoral Dissertation, defended at
the Faculty of Electrical Engineering, Beograd, on 27-th May 1971. Received on 1-st July 1971.
The original version in Serbo-Croatian was completed on 15-th December 1970.
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which describe the relations between the numbers contained in the spectrum of
the graph and which do not involve the concepts of a structural nature, will be
said to describe the spectral properties of a graph.

Theorems which describe and connect various structural properties of a
graph are those which are ultimately important in the theory and applications
of graphs. Theorems which provide connections between structural properties of
a graph and properties of an object which is associated with the graph, are means
of the graph theory, i.e. they are the methods used. We notice that a large number
of results in graph theory is proved without any such method, but by a direct
confrontation of structural properties whose relation is sought.

The spectral method in the graph theory will mean a set of procedures for
obtaining and proving propositions involving the structure of graphs, which use
essentially the spectrum of a graph.

The spectral method was founded in the last 13 years, as a result of the
work of a considerable number of mathematicians. The greatest credit is due to
L. CoLLAaTZ, A. J. HOoFFMAN and H. SacHS. The fundamental paper in this field
was published in 1957 by L. CoLLaTz and U. SiNoGowiTz [10]Y. According to
the bibliography we give at the end, 83 papers dealing with the spectral method
were published up to now. These papers were written by 49 mathematicians
and are published in 46 different journals and other publications.

We might notice that owing to this dislocation of papers, some authors
were not aware of the existance of articles which are similar to those they
published.

The majority of theorems in those papers are related to the connection
between the structural and spectral properties of graphs. The question of
investigating this connection was implicitely posed by L. CorraTz and U.
SinoGcowiTz [10], and explicitely by H. SACHs [78], and by A. J. HOFFMAN [46].

While writing this paper, I have aimed at the following goals:

1° To supplement the existing procedures of the spectral method by original
contributions;

2° To connect the results of various authors;

3° To show by concrete examples the possibilities of application of - the
spectral method;

4° To expose in one place all the important results of this discipline from a
unique outlook.

The paper contains five chapters and the bibliography.

Chapter 1 is the introductory chapter. It contains the basic definitions, the
problem is announced and the fundamental properties of the spectrum of a
graph are described.

In Chapter 2 we start with some combinatorial problems which we then
connect with the spectrum of a graph. This enables us to determine certain
spectral properties of graphs.

In Chapters 3 and 4 we expose the procedures of the spectral method.

1) Papers [92] and [102] appeared before this paper. [92] is an unpublished doctorate
thesis in which the author, dealing with other things, arrives at the graph spectrum. [102] is
a summary of a paper, which was communicated at the 3 rd Congress of Mathematicians
of USSR. This paper is also not published.
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Chapter 3 is devoted to the problem of identification of graphs by the
use of spectra.

In Chapter 4 we give possibilities for determination of structural details
of a graph by means of the spectrum. At the end of the chapter we give a
list of papers which have, by the use of a spectral method, achieved certain
results and we discuss the possibilities of further applications of the spectral method.

Chapter 5 describes an example of application of the spectral method.
The spectral method is used to describe the graphs which are obtained as a
result of operations from a class of n-ary operations applied to graphs.

We sometimes refer to theorems which are exposed later on in the text.
The reason is that we tried to group the results into certain entities. Certain
number of theorems of other authors, whose proofs can be found in the original
papers, is given without proofs. The greater part of these theorems is used in
our proofs, while some of them are quoted for the completeness sake.

* *®
%

I use this opportunity to thank Professor D. S. MITRINOVIC, under whose
guidance I have begun with my scientific work and who has directed this
dissertation.

I am grateful to Professors L. CoLLATZ, V. DEVIDE, D, KUREPA, S. PRESIC,
H. Sacus, M. Stojakovi¢ and P. VAsiC who have read some or most of my
papers upon which this dissertation is based, giving me very useful remarks
and suggestions.

For various forms of help and cooperation I would also like to thank
assistants J. KeCki¢ and R. LuciC.

1. PRELIMINARIES

In Section 1.1. basic definitions are given and the problem with which
this paper deals is announced. Some data on the literature are supplied and
basic results of other authors, in the same field, are presented.

Section 1.2. contains a description of the basic properties of a graph
spectrum. Several theorems of matrix theory, which are im connection with
graph spectra are listed. Basic features of the spectrum of an undirected
graph without loops or multiple edges are summarized in Theorem 1.12.

1.1. The problem announced

Primarily, we shall quote definitions of some basic notions.

Definition 1.1. Let X={x,, ..., x,} be a non-empty set and U a combination
with repetition of the set X x X. The ordered pair G= (X, U) is called a graph.
Elements of X are vertices, while elements of U are edges of the graph.

A graph can obviously be represented by a figure in the following way. We represent
the vertices x,, ..., x, of the graph by arbitrary mutually different points in a plane or in
space. Every edge (x;, x;)EU is represented by a continuous smooth curve joining points
representing vertices x; and x;; this curve is oriented from x; to x;. The edge joining
a vertex with itself is called a loop.
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Definition 1.2. The adjacency matrix A=\ a,||i of the graph G is the matrix
with entry a; equal to the number of edges leading from the vertex x; to
the vertex x;. .

Graphs, whose adjacency matrix is symmetric, have the property that for arbitrary
X;, Xj, the same number of edges leads to the vertex x; from the vertex x;, as is the case
from x; to x;. The set of edges of such grgphs, irrespectively of loops, may be represented
as a set of pairs of edges, where every pair contains the edges joining the same vertices
but having the opposite orientations. Each such pair can be represented by an uniq undi-
rected edge. Therefore, the graphs with symmetric adjacency matrix will be called undirected
graphs. The undirected graphs will be represented by a figure, if necessary, in both described
ways. The term ‘“directed graph” will be applied also to the undirected graph when we
mean their representation by directed graphs. A graph G is called a digraph if two edges,
one leading from x; to x;, and the other from x; to x, are not existent in G for any pair
of vertices x;, x;.

Definition 1.3. Graphs G, and G, are isomorphic if and only if there is a one-to-one
mapping ¢ of the set of vertices of G, onto the set of vertices of G, with
property that for every pair of vertices (a, b) from G, there are so many edges
of the form (a, b) in G,, as there are edges in G, of the form (v (@), @ (b)).

' Isomorphic graphs are, in fact, the identical graphs. If 4, and A4, are
adjacency matrices of two isomorphic graphs, then there is a permutation
matrix P such that 4, =P-14,P.

Definition 1.4. The characteristic polynomial P;(0)=det(AI—A) of an arbitrary
adjacency matrix A of the graph G is called the characteristic polynomial of
the graph. The spectrum (the set of characteristic values i.e. eigenvalues) of
the adjacency matrix A of the graph G is called the spectrum of the
graph.

Since all adjacency matrices are mutually similar (through permutation
matrices), the characteristic polynomial of a graph is unique, i.e., it is invariant
in relation to any reordering of vertices of the graph. The spectrum is also, in the
described sense, an invariant of the graph.

The results of this paper are related primarily to finite, undirected graphs
without loops or multiple edges. Parallelly, other kinds of graphs are dealt
with, but finite graphs only are involved. ‘

Basic questions which can be posed in connection with the spectral method
are the following: 1° How are various properties of the graph reflected in the
spectrum of the graph? 2° Which properties of the graph can be determined by
the spectrum of the graph and in which way?

We quote some fundamental results in this area in order to give a more
precise picture of the problems related to the questions posed.

Definition 1.5. Two graphs are isospectral if they have the same spectra.

Isomorphic graphs are simultaneously isospectral. However, isospectrality
is not a sufficient condition for the isomorphism of graphs. The conjecture,
which may be found and was posed by some mathematicians (F. HARARY
[34] and others), that isospectrality implies isomorphism of graphs, are
disproved by a number of counterexamples. In Section 3.1. a list of known
counterexamples is given.

Thus, a graph is not uniquely determined by its spectrum. Nevertheless,
the spectrum yields several information about the graph. The information is higher
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when we restric ourselves to a narrower class of graphs. So, for example, for undi-
rected graphs the spectral method is more valuable than for directed graphs.
Let us quote an example confirming this assertion. All directed graphs without
cycles have the spectrum containing only the numbers equal to zero, which is
proved in [82]. With the same spectrum there is, in the set of undirected
graphs, only one graph, i.e. the graph without edges.

A fundamental result in this area is due to H. SACHs [78]. From his
paper we quote theorems on the basis of which it can be established which
graphs have the same spectra. These results represent, in fact, specializations
of results in connection with signal flow graphs (see [34]).

Theorem 1.1. Let R, (M) = Z a, Nt be the characteristic polynomial of an ar-
i=0
bitrary (directed) graph G. Then

a= 2 (=1’ (i=1,..., n),
LiCG

where the summation is taken over all linear oriented subgraphs L, with exactly i
vertices;, p(L;) denotes the number of components of L;.

For undirected graphs we have the following specialization of Theorem 1.1.

Theorem 1.2. Let Py (2)= > a;\"~ be the characteristic polynomial of an undi-
i=0

rected graph. Elementary figures are: a) a graph with two vertices joined by an

edge, b) cycle with p(p>1) vertices. The basic figure U, is every graph, whose

all components are elementary figures. Let the figure U, have p(U) compo-

nents out of which ¢ (U)) are cycles. Then

a= 2, (—1)Pwp2ewy,
U,CG

1

where the summation is taken over all basic figures U, with exactly i vertices
which, as subgraphs, are contained in G.

These results represent a generalization of those from [10]. Equivalent
results were given later by other authors [71], [91], [95]. Except for this, it is
shown in [91] that not only the characteristic polynomial of the adjacency
matrix, but .also more general matrix functions do not determine the graph up
to isomorphism.

The mentioned results of H. SacHs, though they contain, in principle,
the answers to the questions posed on page 4, cannot automatically solve all
concrete problems which can be posed in connection with a given graph. The
reason is that the linear subgraphs or basic figures are not in a simple con-
nection with those characteristics of graphs which are interesting in applications.
Therefore, further investigations are necessary in which, naturally, Theorems 1.1
and 1.2 are very significant.

Except the characteristic polynomial of the adjacency matrix of the
graph some other functions of the adjacency matrix are studied in the litera-



6 D. M. Cvetkovi¢

ture (see, for example, [91]). Some authors have investigated the characteristic
polynomial and the spectrum of other matrices corresponding to the graph.
There are three groups of papers with this topic:

1. In papers [96], [103], [104], [105] the matrix C= A4+ D, where A4 is the
adjacency matrix and D=||8,d,||i (3, KRONECKER’ s 8-symbol, d, the degree
of the vertex x;) the matrix of vertex-degrees, as well as its characteristic
polynomial P (3) are treated. The matrix C is called mampuua cocegcmsa in
order to differ from the matrix 4 named wmampuya cmexnocmu in Soviet
literature.

2. A. K. KeL'MANs ([98] — [101]) investigated a graph function related
to the characteristic polynomial of the matrix D—A4. For the graph G with n

vertices he introduced the funtion B;(G)= % det (D——Afl- Al

3. In papers of J. SEIDEL and others ([33], [58], [83], [84], [85]) the
(—1,1,0) - adjacency matrix and its characteristic polynomial Pg(}) are
used for undirected graph without loops or multiple edges. The mentioned
matrix is of the form B=|b,||7, where n is the number of vertices, b,=0,
b;=—1 if x; and x; are adjacent vertices and b;=1 in the opposite case.
This matrix is connected with the adjacency matrix lgy the relation B=J—2A4—1,
where J denotes the matrix whose all entries are equal to 1.

If G is a regular graph, all the mentioned functions can be brought in a
simple algebraic connection with the characteristic polynomial of the adjacency
matrix and the properties of these functions are easily transferred to the men-
tioned polynomial. In the case of nonregular graphs each of these three functions
has its own properties. We shall use the results related to these functions only
for regular graphs. Connections of mentioned functions with characteristic
polynomial P,(2) of a regular graph G of degree r are given by relations

(1.1) Pc(N)=Ps(r—n),
(1.2) B}(G) =%pc A +7),

wom At 1+2r—n A+ 1
(1.3) Py =(—1y 22 PG( . )

The first and the second relation are obvious. The third relation can be
obtained, for ‘example, in the way in which the connection between the cha-
racteristic polynomials of the graph and its complement in [77] is obtained.

Note that the analysis of graphs can be made by various matrices
corresponded to the graph, ignoring characteristic polynomials or spectra.
There is an abundant literature dealing with the above subject.

Several theorems of matrix theory have interpretations in the graph
theory. Note that during the last ten years several authors have dealt with the
inverse problem, i.e., with the use of graph theory for obtaining results in
the matrix theory (see, for example, [27]). Some results from these papers
can be of interest for the spectral method.

Finally, note that all mentioned kinds of spectra have a linear base.
In [69] some non-linear spectra are defined and their investigation is sug-
gested.
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1.1. Fundamental properties of the spectrum of a graph

Some fundamental properties of spectra of graphs can be immediately
established using several theorems of matrix theory.

Definition 1.6. A matrix is called non-negative if all its elements are non-
negative numbers.

Since the adjacency matrix of a graph is non-negative, the spectrum of
the graph has the properties of the spectrum of non-negative matrices. For
non-negative matrices the following theorem holds (see, for example, [32], vol.
I, p.66):

Theorem 1.3. A non-negative matrix always has a non-negative eigenvalue r such

that the moduli of all its eigenvalues do not exceed r. To this ,,maximal* eigen-
value an eigenvector with non-negative coordinates corresponds.

In the further text a vector with positive (non-negative) coordinates will
be called a positive (non-negative) vector.
Definition 1.7. A matrix A is called reducible if there is a permutation matrix
P such that the matrix P-1AP is of the form ”;
square matrices. Otherwise, A is called irreducible.

Spectral properties of irreducible non-negative matrices are described by
the following theorem of FROBENIUS ([32], vol. II, p. 53—54).

g , where X and Z are

Theorem 1.4. An irreducible non-negative matrix A always has a positive eigenvalue
r that is a simple root of the characteristic polynomial. The moduli of all the
other eigenvalues do not exceed r. To the “maximal” eigenvalue r there corresponds
a positive eigenvector. Moreover, if A has h eigenvalues of modulus r, then these
numbers are all distinct and are roots of the equation Nt—rt=0. More generally:
the whole spectrum {A;=r, X,, ..., N} of A, regarded as a system of points in
the complex N - plane, goes over into itself under a rotation of the plane by

the angle 271: If h>1, then A can be put, by means of a permutation of rows

and by the same permutation of columns, into the following *“cyclic” form

'0 A, 0 .- 0
0 0 A, 0
A= : ’
0 0 0 An-1,n
| Ay, O 0 0

where there are square blocks along the main diagonal.

According to Theorem 1.3 the spectrum of a graph lies in the circle
|A|<r, where r is the greatest real eigenvalue. This eigenvalue is called the
mdex of the graph. The algebraic multiplicity of the index can be greater than
1 and the corresponding eigenvector is, in general, non-negative.

It is known that irreducibility of the adjacency matrix is related to the
property of connectedness of the graph. To a strongly connected graph an
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irreducible adjacency matrix corresonds and a graph with irreducible adjacency
matrix has a property of the strong conmectedness [27], [82]. The strong con-
nectedness is reduced in undirected graphs to the connectedness.

According to Theorem 1.4, the index of a strongly connected graph is
a simple eigenvalue of the adjacency matrix and a positive eigenvector
belongs to it.

For the undirected graph G, whose components are graphs G, ..., Gy with adjacency

matrices 4,, ..., As the adjacency matrix 4 is a direct sum of 4,,..., 4s. It can easily be
seen that the following relation holds:
(1.4 Po(N)=PG,(N)-+-P:Gs (A).

Hence, the spectrum of the graph is the union of the spectra of its components, where
the attention should be paid to algebraic multiplicity of particular eigenvalues. In [82] it is
proved that (1.4) holds for an arbitrary graph, where G, ..., G5 represent the components
of the strong connectedness of G.

We shall now list some more theorems of the matrix theory showing new
spectral properties of graphs.

Theorem 1.5. (See for example, [32] vol II, p. 69) The “maximal” eigenvalue
¥ of every principal submatrix (of order less than n) of a non-negative matrix A
does not exceed the “maximal” eigenvalue r of A. If A is irreducible, then always
r'<<r holds. If A is reducible, then r'=r holds for at least one principal submatrix.

Theorem 1.6, (See, for example, [10]) The increase of any element of non-
-negative matrix A does not decrease the “maximal” eigenvalue. The “maximal”
eigenvalue increases strictly if A is an irreducible matrix.

Theorem 1.7. (See, for example, [59] p. 64) All the eigenvalues of a hermitian
are real numbers.

Theorem 1.8. (See, for example, [37]) Let A be a real symmetric matrix, whose
greatest and smallest eigenvalues are denoted by r and q. Let x be the eigenvector
belonging to r. For a principal submatrix B of the matrix A let ¢’ be the smallest
eigenvalue whose eigenvector is denoted by y. Then q'=q. If q'=gq, vector y is
orthogonal to the projection of vector x on the subspace corresponding to B.

Theorem 1.9. (See, for example, [59] p. 119) Let A be a hermitian with
eigenvalues Ay, ..., h, M =X = - - - Z},) and B one of its principal submatrices;
B has the eigenvalues o, ..., W, (@ =,= - 2W,). Then, the inequalities
MpmpiSW =N (=1, ..., m) hold.

Theorem 1.10. (See, for example, [32] vol. II, p. 79) If the “maximal” eigenvalue
r of a non-negative matrix A is simple and if positive characteristic vectors belong
to r both in A and AT, then A is irreducible.

Theorem 1.11. (See, for example, [32] vol. II, p. 78) To the “maximal” eigen-
value r of a non-negative matrix A there belongs a positive eigenvector both in
A and AT if and only if A can be represented by a permutation of rows and by
the same permutation of columns in quasi-diagonal form A=diag(4,, ..., A,
where A, ..., A, are irreducible matrices each of which has r as its “maximal”
eigenvalue.

Theorems 1.5 and 1.6 state that in strongly connected graphs every
subgraph has the index smaller than the index of the graph.
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The adjacency matrix of an undirected graph is symmetric (i. e., hermitian)
and the spectrum of the graph, containing only real numbers, according to
Theorem 1.7, lies in the segment [—r, r].

Let {A,, ..., A,} be the spectrum of a graph. The number of loops is
equal to the trace of the adjacency matrix. Therefore, we have for the graphs
without loops trA=0, i. e, A, + -+ +A,=0. The number of vertices of the
graph is, naturally, equal to », and for undirected graphs without loops or

multiple edges the number of edges is equal to m:% > AZ (see 4.1.). Hence,
i=1

for this class of the graphs the basic element of the graph can be immediately

determined from the spectrum.

It is quoted in [10] that for the index r of an undirected graph without
loops or multiple edges the inequality 2cos%§r§n—1 holds, where n de-

n
notes the number of vertices. The lower bound is reached for the trees having
only two vertices of degree 1, and the upper bound for complete graphs. If we
omit the assumption of connectedness, according to the foregoing, for a graph
without edges we have, r=0, and otherwise r=1.

For the smallest eigenvalue g from the spectrum of the graph G the
inequality —r=<g=<0 holds. For the graph without edges we have ¢=0.
Otherwise ¢ =< —1. This is a consequence of Theorem 1.8. Namely, if g were
greater than —1 we should have that a principal submatrix of the adjacency
matrix has the smallest eigenvalue which is less than ¢. This submatrix cor-
responds to the graph Kj ;- having two vertices and one edge joining these
two vertices, which surely exists as an induced subgraph in G, because G
contains at least an edge. We have g=—1 if and only if all components of
G are complete graphs (Theorem 3.4). The lower bound ¢=—r is achieved,
if the component of G, having the greatest index, represents a bipartite
(bichromatic) graph (Theorem 4.3).

According to the foregoing, the following theorem precising the fundamental
spectral properties of undirected graphs without loops or multiple edges, can
be formulated.

Theorem 1.12. For the spectrum {A,, ..., A} of an undirected graph G without
loops or multiple edges the following statements hold:

1° The numbers A, ..., A, are real and A+ - - - +%,=0;

2° If G contains no edges, we have A = - - - =k, =0;

3° If G contains at least one edge the below stated inequalities hold Jor the
greatest number A =r and for the smallest \,=q, from the spectrum:

(1.5) 1<rsn—1,

(1.6) —r=g=-—1.

In (1.5) the upper bound is attained if and only if G is a complete graph, while
the lower bound is reached if and only if G has, as components, graphs K, , or
isolated vertices, where at least one K, , must exist. In (1.6) the upper bound is
reached if G contains, as components, complete graphs, and the lower bound if
and only if the component of G, having the greatest index, is a bipartite graph.
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If G is a connected graph, the lower bound in (1.5) is replaced with 2005-—”—1,
n+

Then equality holds if and only if G is a tree with two vertices of degree 1.
We shall now list some spectral characteristics of regular graphs.

The index of a regular graph is equal to the degree of the graph [10].
It can easily be seen that this holds for unconnected graphs too, but then the
index is not a simple eigenvalue. The multiplicity of the index is equal to the
number of components. Immediately it can be proved that an eigenvector,
having all coordinates equal to 1, corresponds to the index of a regular graph.
In a connected graph the eigenvectors of other eigenvalues are orthogonal to
this vector, i. e., the sum of their coordinates is equal to O.

Further spectral properties of graphs can be obtained starting from the fact that the
coefficients of the characteristical polynomials are integers. It follows from this that the
elementary symmetric functions and sums of k-th powers (k a natural number) of eigenvalues
are integers too. Since the coefficient of the oldest term of the characteristic polynomial is
equal to 1, rational eigenvalues (if they exist) are integers.

Eigenvalues and eigenvectors of the adjacency matrix of a graph have also the following
property related to the structure of the graph. Let A be an eigenvalue and wu=(u,,..., u,)
the corresponding cigenvector of the adjacency matrix A of the graph G. We shall correspond
to the vertex x; the quantity w; (i=1,..., n). If the equality Au=2%ru is written in the scalar

form, we have, for every i, )\u,-=2a” u;, where summation is made over indices j of those

J
vertices x; in which at least an edge from the vertex x; leads. For undirected graphs without
loops or multiple edges it can be written lu,=2u,. In this case for every vertex x; the

i
sum of quantities #; of vertex x;, adjacent to x;, is A times greater than the quantity u; of
the vertex x;.

Despite several conditions which must be satisfied by a graph spectrum, we are not
familiar with any procedure, except a direct verification, by which we can establish whether
or not a given set of numbers represents the spectrum of a graph.

2, ON SOME COMBINATORIAL PROBLEMS RELATED TO SPECTRA OF GRAPHS

In this Chapter we start from some combinatorial problems related to
spectra of graphs. One combinatorial model (variations with restrictions),
suitable for solving various combinatorial problems, is described. The number
of variations with restriction is connected with the number of walks® in a graph
and corresponding generating function is determined.

In 2.2. it is shown, that this generating function can for some graphs be
determined by generating functions of simpler graphs.

In 2.3. it is established that the obtained results represent the basis for the
study of several spectral properties of graphs. The notion of the main part of
the spectrum of the graph, which is efficiently applied to proving certain theorems,
is also introduced.

2.1. The number of variations with restrictions and the number of walks in a graph

Variation of the k-th class (also called: permutation k£ at a time) with
repetitions of the set X={x,, ..., x,} is every ordered k-tuple (xil, e x,.k)

where i;&{l, ..., n} (j=1, ..., %). The number of such variations is V’f,=”k-

1) In my previous papers the word <path” was used.
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During the formation of variations with repetitions it is possible to impose
certain restrictions. In this paper we shall consider variations with restrictions
of the following type.

Definition 2.1. Let the set X={x,, ..., x,} be given. We say that on X restric-
tions are defined if for every x; the set X is decomposed into two disjoint sets X;;
and X;,. Permitted variation with repetitions of the set X under given restrictions
is every k-tuple (x,, ..., x;) in which after its arbitrary element x;, which is
not the last in that variation, appears an element from the set X,,.

Definition 2.2. A pair (x;, X;) of adjacent elements of a variation is called a
permitted pair if and only if x;CX,,. The square matrix A—Ha;j 1, where a;
=1 if x;, x; is a permitted pazr and a;=0 otherwise, is called the matrzx of
permitted pairs. The matrzx of restrtctzons A is obtained Jrom A by interchanging
0 and 1.

In [17] the number V¥ (4) of variations with repetition of the k-th class of
a set with »n elements, with a given matrix cf permitted pairs is determined.

We shall connect this problem with the problem of determining the number
of walks in a graph. (Under “walk of length k” we understand a sequence
4, ..., w, of the oriented edges of the graph, where it is not necessary that
u;#u, and where for i=2, 3, ..., k the edge  starts from that vertex in which
u_, termmates An edge can be a loop. In case of undirected graphs every edge
is to be replaced with two oriented edges with mutually opposed orientations.)

If A is interpreted as the adjacency matrix of graph G with vertices
X;, .. .5 X,, it can easily be seen that the number vk (4) is equal to the num-
ber of all walks of length k—1 in G.

The starting point for considerations in [17] was the following well
known theorem (see, for example, [3], p. 124):

Theorem 2.1. If A is the adjacency matrix of the arbitrary graph G, the element at
the place (i, j) of the matrix A¥ (k=0, 1, 2, ...) is equal to tHe number of walks of
length k, leading from the vertex x; to the vertex x,.

In [17] the following theorem is proved.
Theorem 2.2, The function
()
2.1 GO=—1)"—77v
24(1)
t
is generating function for the numbers V¥ (A) of the variations of the k-th class

with repetitions and with the matrix of permitted pairs A, where the following
relation holds

.2) Ve 4)= % G® (0) (k=1,2,..).

For k=0 one obtains V, A =1.
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-+ o
From (2.1) and (2.2) it follows that the generating function H (¢) = Z N, t%
k=0

for the numbers N, of the walks of the lengths k, of the graph G, with the
adjacency matrix 4, is given by the expression

P;(_L)
t
P——i—_——1 ’
A(t)
where A is to be interpreted as A4=J--A;J representing a square matrix whose
all elements are equal to 1.

However, if G has multiple edges or multiple loops, then the matrix 4
has no significance. If the maximum number of edges between the two vertices
or loops of a vertex in G is equal to p (i.e. if G is a p-graph), it is convenient

to express the generating function by characteristic polynomial of the matrix

A?=pJ —A, which can be interpreted as the adjacency matrix of the complement
of G. Using derivations similar to those of [17] we arrive at the following theorem.

Ho(0)= | (~1)"

Theorem 2.3. Let G be a p-graph with the adjacency matrix A. The generating
Sfunction for the numbers of walks in G is given by

1
Hc(t)z— (=1 — 1
Pl )

The following theorem is also proved in [17].

Theorem 2.4. The generating function for the numbers of walks of the undi-
rected graph G without loops or multiple edges is given by

()
. 1 G ¢

(2.3) HG(t)‘:T (—‘1)"—~“(T)——1
PG —
f

In [53] P. W. CASTELEYN gives the expression for the generating function
for numbers of walks between two prescribed vertices of graph, but in that
expression the characteristic polynomial of the complementary graph does
not appear.

—1

ExampLE 2.1. A regular graph of the degree r, with n vertices, has, obviously Ny ==nr* walks
of the lengths k, and therefore

-+ oo
H.(t)= z nrk (e = .
= —rt
For r=n—1 one obtains the complete graphs and for r=0 the graph, which contains only
isolated vertices. The graph, which has only one vertex without edges and loops, has the
generating function of the form Hy(f)=1.

ExaMrLE 2.2. In [63] the combinations of the set {1,..., n} with restricted differences
and cospan were considered. For the combination of the p-th class {x;, ..., x,},
1<x,<---<xp=n, differences are defined by d;=x;,,—x;, j=1,...,p—1, and span by
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d=x,—x,. The number of combinations, satisfying restrictions k<d;<k’, j=1,..., p—1,
I=n—d<l', is determined. Special cases of these combinations with a generalizatidn in
another direction can be dealt \_mth by ?h.e use of tht; above proposed procedure. Consider
combinations of the p-th class with repetitions for which we have d,EM (j=1,..., p), MC
{1,...,n and for which the greatest element m from M satisfies the condition
(p—1) m<2n. The number of such combinations can be determined by considering the
graph G, having vertices x,;,...,x, and in which, for every pair of indices (i,j), a
(directed) edge leads from the vertex x; to the vertex x; if and only if (j—i) (mod m)&M.
Besides, G has a loop at every vertex. Exactly p closed walks of length p correspond to
each of the considered combinations. Only those closed walks, which, due to the existence
of loops, do not leave the vertex fl."om which they start, correspond to none of the combinations.
The number of such closed walks is equal to #. According to theorem 2.1 the number of closed
walks of length k is equal to the trace of the k-th power of the adjacency matrix. If {%,, ..., An}
is the spectrum of the graph G, the number of considered combinations, except of some
l n
trivial cases, is equal to — Z AP—n.
i=1
In [89] M. Tuero determines the spectra of some graphs of described form.

ExampLE 2.3. In how many ways N, the king (chessfigure) can make a series of k& moves
on a chessboard of dimensions nxn?
The solution can be found in [18]. See also Example 5.3.
ExampLE 2.4. To the determination of the number of walks in graph the following combi-
natorial problem, which is not still completely solved, can be reduced.
How many kings at most and in how many ways can they be placed on a chessboard of
dimensions m x n, so that they do not attack each other?
The problem is partially solved in [81]. The maximal number of kings for a square board

n+1\2

n\2
of dimensions nxn is for n odd and > for n even. In the first case there is only

one way of placing the kings while in the second case the number is not determined in the
general case. It is only known that any arrangement of kings must have the following
properties.

Consider the chessboard with 2mx2n fields where 2m is the vertical and 2a# the hori-
zontal dimension, which represents a somewhat more general case. Let us partition this board
by horizontal and vertical lines into squares containing four fields each. In each of these
squares, on one of its four fields, one king can be placed. Thus, on the board mn kings in
total can be placed. However, the kings cannot be arranged in an arbitrary way since the
placing of a king on a square can prevent the placing of another king on some fields of
the adjacent square. In order to determine the number of ways of placing of kings consider
the first left vertical column of squares. It represents one rectangular part of the chessboard
of dimensions 2m x 2, i.e. it contains m squares of dimensions 2 x2. Put in this column m
kings. It can easily be seen that the number of arrangements of these kings is (m-+1) 2™,
In the adjacent right column of squares the following m kings obviously cannot be placed
in all (m+1)2m ways because some of arrangements are excluded by the very place of
kings in the first column. Therefore, we shall define the graph G with (m+1)2™ vertices
corresponding to the mentioned arrangements of kings in one column of squares. From the
vertex x an oriented edge leads to the vertex y, if and only if, after the column of squares,
corresponding to the vertex x, the column, corresponding to the vertex y, is to be found.

The number of arrangements of mn kings on the 2mx 2n board is equal to the number of
walks of length n—1 in the graph G.

Consider the case m=2. Every column contains two squares. Let us number the fields in
every square by 1, 2, 3, 4 according to the following scheme

1 2
3 4.
Then in the first left column of the board the following 12 arrangements of kings can
appear:
i1 2 2112 2 3 3 4 4

1 21 2 3 43 43 4 3 4.
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'The adjacency matrix of this graph is

1111 1111 1111
0101 0101 00O 1
0011 0011 0011
0001 0001 0001
1111 1111 1111
A_010101010101
o 011 0011 0011
0001 0001 0O0O071
1111 11111111
0101 0101 01F0°71
0001 0011 0011
0001 00O01 O0O0O01

5

It seems possible to solve this problem,
bed method.

general case, by means of the above descri-

2.2. Generating function for the numbers of walks and characteristic
polynomial of the complete product of graphs

In this Section we shall consider only undirected graphs without loops
or multiple edges. G denotes the graph complementary to the graph G, and G’
the graph, which can be obtained, if to each of the vertices of G one loop is
added. The adjacency matrix of the graph G is A—I, and of G’ is A+1.

We consider also the following type of sum and product of graphs.

Definition 2.3. The direct sum G,+G, of graphs G, and G, is a graph con-
taining all the vertices and all the edges of boths graphs G, and G,, and no
other vertices or edges. The graph G,NVG, is called the complete product of
graphs G, and G, and is obtainable from G, 1 G, if each of the vertices of G,
is joined by an edge with each of the vertices of G,.

In [17] the following theorem is proved:

Theorem 2.5. For the generating function Hg(t) for the numbers of walks of
the graph G the following formulas hold:

1 1
4 Hg(t)=—— H|—),
@4 o= Ho(75)
t
T
(2.5) Hs ()= s —
t+1—tHG(—:1-)
(26) HGl-i-Gz(t)=HGl(t)+HGz(t)’
(2 7 Hg ve (t)zHGl(t)"'HGz(t)"' 2t Hg, (1) Hg, (1)
. VG, .

1—12Hg, (t) Hg,(1)
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ExAMPLE 2.5. The bicomplete graph Ka,,n, can be represented as the V-product of graphs
G; and G,, both of which contain only isolated vertices. We then have He,(f)=n, and
Hg,(t)=n,, and according to (2.7), for the bicomplete graph we have

ni+ny,+ 20, n,t

Hicny, n, ()= 1—n,n, 12

Specially, for n,=n and n,=1 the considered graph represents a star and corresponding gene-
rating function is

n+1+42nt

Hyp,1 ()= 1—nt?

ExaMpLE 2.6. Determine the generating function for the numbers of walks for the graph
obtained by deleting m nonadjacent edges from a complete graph with n vertices. The com-
plement of this graph contains, as components, m regular connected graphs of degree 1 and
n—2m isolated vertices. Hence,

n—t (n—2m)
+n—2m=——-=

H-z(D=m
¢® 1—:¢ 1—¢

and, according to (2.5),
n+2t(n—m)

1—t (n—3)—2 (n—m—1) 2’

He(H=

ExaMpLE 2.7. If the function H(t) is known, the connection between characteristic poly-
nomials of graph and its complement can be established. This fact can be used to determine
the characteristic polynomials of some graphs.

A graph is k-complete if the set of its vertices can be partitioned into k groups in such a
way that every two vertices from different groups are adjacent and every two vertices from the
same group are not adjacent. If, then, these k groups have n,, ..., n; vertices respectively,
the graph is denoted by Kn,,..., ng.

First we have
k

_ D R N
A, = 2 1—(m—11t’

TN =

because Enl,...,nk is a direct sum of complete graphs with n,, ..., n, vertices respectively.
According to (2.5) we have : )

S

im1 1+nit

HK ni (t) - k

My enes
1—t >

i=1 1+nt

n;

On the other hand, we have, according to (1.4) and to the Example 2.9.

k
Py nk(t)=(t+1)"“" 1T ¢—n+0.

Miseany i1

Formula (2.3) can be written in the form
tP5(—t—1)

H, 1)+t-
S\t

Pg(t)=(—1)
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According to foregoing, we obtain

k k
ng
P H=tr-k(1— t .
O < igl t+n,)g( +n;)
If k=2, we get the case from the Example 2.8.
n
If ny=--- =nk=?, a result from [30] is obtained.

Theorem 2.5 enables the determination of the characteristic polynomial
of a complete product of graphs. In virtue of (2.3) and (1.4), (2.6) becomes

1 1
Pa”‘a‘(———-l) P PG—l(—-———l)
L= pmem 2220 1 1 =2—1~ (=) —

o)

t 1 1 =1
PG, |—) PG, |—
t [

Since @?2=51V52, putting —%—1=)\ and substituting 5,, G, for G, Gy,

i.e. G,, G, for G,, G,, the following theorem is arrived at:

Theorem 2.6, The characteristic polynomial of the “/-product of graphs is given
by the relation ‘

28) P,96,() = (—1)"Pg, () Pg,(—A—1)
+ (= 1) Pg,(0) PG, (—A—1)—(— y+m P (—A—1) Pe,(—A—1).

If G, and G, are regular graphs, Theorem 2.6 together with Theorem 2.10.
gives the following result from [29]:

Theorem 2.7. The characteristic polynomial of the complete product of regular
graphs G, and G, is given by the ralation:

PG, (M) P, (M)
A—r) —r)
ExampLE 2.8. (FINCK and GROHMANN [29]). The relation Kpn;,n, =G,y G, holds for the

bicomplete graph Ku,,n,, where G, and G, are graphs consisting of n, respectively n,
isolated vertices. Obviously Pcl()\)=7\”1 and PGZO\)=N‘2. On the basis of (2.9) we then

have PKnl’ y ) =A—n n) 2,

(2.9) P g6, (N = [A—r) (A—rs)—mn,].

2.3. The main part of the spectrum

Let {A;, ..., A,} be the spectrum of an undirected graph without loops
or multiple edges. In [17] the following definition of the main part of the
spectrum is given.

Definition 2.4. The main part of the spectrum of a graph is the set of all these
eigenvalues X, mutually different, for which, in the expression

(2.10) N,=C M+ oo +C A0
for the number of walks, C;+ 0 holds.
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Hence, the main part of the spectrum is a subset of the zeros of the
minimal polynomial of the adjacency matrix of the graph. In regular graphs the
main part of the spectrum contains only the index of the graph and, as it shall
be seen (Theorem 2.13), only the regular graphs have this property.

We shall define one notion more, which enables research of some pro-
perties of the main part of the spectrum.

Regular graphs have the property that the same number of walks of
certain length k starts from the -every vertex (compare with Theorem 4.16
and with the result of T. H. Wer). If r denotes the degree of the graph, the
number of these walks is r¥, i.e. the total number of walks is, as it has
already been said, N, =nr¥, where n is the number of vertices. Therefrom we

k kinr
obtain r=\/-1§‘. We see that the expression \/% defines a certain kind of a

o—
mean value of degrees of vertices. In regular graphs the expression \/% does
not depend on k, since all the degrees of vertices are mutually equal.

Definition 2.5. The dynamical mean value d of degrees of vertices in a graph is

given by d= lim \/ Ne

k—>+ow
Theorem 2.8. The dynamical mean value of the degrees of vertices is equal to
the index of the graph.

Proof. We shall primarily prove a lemma.

Lemma 2.1. If A, =r (r being the index of the graph), and if the graph con-
tains at least one edge, the inequality C, > 0, holds for the quantity C; from (2.10).

Proof of the Lemma. We sce from [17] that each element of 4% is of
the form (2.10), where, naturally, the coefficients C, depend on the ordinal
numbers of the row and of the cclumn of the considered element. The coef-
ficient of A * is not negative, since in the opposite case, for sufficiently great
k, the considered element would be negative. If we add up the corresponding
expressions for all the elements of A%, we obtain (2.10), and it must be
C,=0. However, C,=0 is impossible, since tr A¥=A%+...+AF% and this
implies that the smallest value of C, is equal to 1. \

With this Lemma 2.1 is proved.

From the Lemma and according to the definition of the dynamical
mean value of the degrees of vertices the statement of Theorem 2.8 follows.

The -concept of the main part of the spectrum of a graph facilitate the
proofs of a number of theorems, whose descriptions are given in the fur-
ther text.

The arguments, used in the proof of Theorem 3 from [17], are suf-
ficient for proving a more general theorem. Actually, the generating functlon
for the number of walks is of the form

@+ @R + 1)
HG(’)"”[ =) =) "1]’

2 Publikacije
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where u——l— and where {\,..., A} denotes the spectrum of the graph G.
Then we have

AN +1) (R, +1) + LN's)
@1 @e -y Lt 2 TEe=l4 Y

i=1

We see that ¢ (¥) must be a rational function having only simple poles. The
set of these poles is equal to the main part of the spectrum of the graph.
Thus, multiple factors in the denominator of expression (2.11) have to be
cancelled, so that, after all possible cancellations, the zeros of the polynomial
in the denominator represent the main part of the spectrum. So we have the
following theorem:

Theorem 2.9. If the spectrum of G contains eigenvalue )\ with multiplicity
p(p>1), then the spectrum of the complement G contains eigewvalue —r—1,
- whose multiplicity p satisfies the inequality p=p—1.

This theorem has several interesting corollaries. Corollary 2 is published
in {17] as Theorem 3.

Corollary 1. If Theorem 2.9 is applied to the complement G of G, the inequality
p=p—1 is obtained, _which together with the inequality from the mentioned
theorem gives p—1<p<p+1.

Corollary 2. Let G be a self-complementary graph. Then to each eigenvalue A,
Jrom the spectrum of G of the multiplicity p; (p;> 1) (if it exists) corresponds
another eigenvalue };, whose multiplicity p, satz.sfzes the inequality p,—1<p,<p,+1,
where A +N=—1.

Corollary 3. If the spectrum of the graph G, contains the eigenvalue )\ with the
multiplicity p (p>2), the spectrum of the complete product G,y G, of the graph
G, with the arbitrgry graph G, contains A as an eigenvalue of the multiplicity
D', where p'=p—2.

. Proof. Since leG2 G +Gz, Corollary 3 follows immediately from
‘Theorem 2.9 and the fact that the spectrum of direct sum of graphs is ob-
tained by union of the spectra of graphs - summands.

Theorem 2.10. Let G be a regular graph of degree r and with n vertices. To
each of eigenvalues \;(\;#r) from the spectrum of the multiplicity p, the ei-
genvalue —h,—1, whose multiplicity is also p;, corresponds in the spectrum of
the complement G, i.e. for characteristic polynomials of G and G the following
relation holds:

(2.12) PE() = (—1)“—"’—“”i1~

—A—1).
T Pg(—2—1)

Proof. The main part of the spectrum of a regular graph contains only
the index r of the graph. Therefore, all the factors, except u—r, from the
denominator of expression (2.11) have to be cancelled. Since the index of the
complement is equal to n—1—r, we obtain the statement of Theorem 2.10.
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Corollary. As it is already mentioned, Theorem 2.10 together with Theorem 2.6
yields Theorem 2.7. Also the statement of Corollary 3 of Theorem 2.9 can be
precised. Namely, if p>1, it follows from (2.8) that Pgyc, (N) has A as a root
of multiplicity p’, where p’=p—1.

ExaMpPLE 2.9. Let G be a complete graph with n vertices. For the complement G obviously
Pe(2)=2" holds. According to (2.12) we have Po(M)=(A—n+1) A+ 1)*-1. If G is a regular
graph of degree n—2, then n=2k, Pg(})=(*—1)¥ and Po(A)=(A—n+2) A\ (A +2)*~1,

Theorem 2.10 is proved in [77] in another way. The theorem given
below is quoted in this paper as an immediate consequence of Theorem 2.10.

Theorem 2.11. In a self-complementary regular graph, with n=4k + 1 vertices, to
every eigenvalue )\ (N2 k) another eigenvalue },, where \;+A,= —1, corresponds.

This result can be reached in a similar way as the previous theorem. It
is interesting to compare this result with Corollary 2 of Theorem 2.9.

ExampLE 2.10. The question may be immediately asked, whether self-complementary graphs
described in Corollary 2 and not involved by Theorem 2.11 exist? The self-complementary
graphs with 4 or 5 vertices do not satisfy the required conditions. (As it is proved in [74)
and [77] the self-complementary graphs have 4 k or 4 k+ 1 vertices, where k is a nonnegative
integer.) However, in [74] .two self-complementary non-regular graphs with 8 vertices are
quoted, whose adjacency matrices are:

01111010 01001001
1 0100000 10101001
11011010 01011001
4, = 10100000 , Ay— 001 01001
10100111 11110100
00001010 00001 010
10101101 00 0 0 0101
00 001010 11110010
The first graph has the spectrum [4, L';Vll, 0,0, —1, —1, —1, —_1——2Vﬁ} . The spec-

V—SZ——I and Y5+t

7 as two-fold eigenva-

trum of the second graph contains the numbers
lues. Hence the answer to the question asked is affirmative.

On the other hand, there are non-self-complementary graphs but having the property of
self-complementary graphs expressed by Corollary 2. Such is, for example, the graph obtained
from the complete pentagraph by deleting one edge. It has the spectrum {V—'7+1, 0, —1,
-1, 1-V7 }.

From the expression (2.11) the following theorem can be also immedia-
tely obtained:

Theorem 2.12. The main part of the spectrum of the graph G and the main part
of the spectrum of its complement G contain the same number of elements, where none
eigenvalue X, from the main part of the spectrum of G and none eigenvalue Xj Jrom
the main part of the spectrum of G satisfy the relation 7\i+ij= —1.

2%
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Using the generating function for the numbers of walks in the graph,
the following theorem can be proved too:

Theorem 2.13. Using abbrevations from Theorem 2.10, the relation (2.12) holds
if and only if G is a regular graph.

Primarily, we prove the following lemma:

Lemma 2.2. The graph G is regular of degree r and has n vertices if and only
if for the numbers N, (k=0,1,2,...) of walks of length k in G the relation
N, =nr* holds.

Proof. If G is a regular graph of degree r with n vertices then, obviously,
Ny =nr*. If N,=nr*, then the number of vertices is equal to Ny=n and

N,=nr. Since in every graph the number of walks of length 1 is equal to
two-fold number of edges we get d _Z_m_ﬂn__r for the mean value d of de-
n
grees of vertices. According to Theorem 4.10, the relation d=r implies that G

is a regular graph.

Proof of Theorem 2.13. It is sufficient to prove that the relation (2.12)
implies the regularity of the graph. If (2.12) is inserted in the relation (2.3),

Hg(t) =

regular graph.
This completes the proof of Theorem 2.13.

i.e. N =nrk is obtained. According to Lemma 2.2, G is a

3. SPECTRAL CHARACTERISATIONS OF CERTAIN CLASSES OF GRAPHS

In this Chapter various variants of the following problem are considered:

The spectrum, i.e. some spectral characteristics of the graph are given.
Let us determine all graphs from a given class of graphs-having the given spec-
trum, i. e. the given spectral characteristics.

Thus, the possibility of graph identification as an entity is considered.
In the following Chapter, as a contrast to this, the procedures enabling the
determination of structural details of the graph on the bas1s of its spectrum
are described. ,

In this Chapter we shall consider only the finite, undirected graphs without loops or
multiple edges so that the term graph, if no particular mention is made, will be used for
representatives of the above mentioned class qf graphs.

3.1. The list of the familiar pairs of isospectral non-isomorphic graphs

In [10] L. CoLLaTZ and U. SiNoGowrrz have already noted that the spectrum of the
graph does not determine the graph precisely up to isomorphism. In the mentioned paper the
example of two isospectral trees with 8 vertices has been given. These trees have various sets
of vertex degrees too.

The term ,,a pair of isospectral non-isomorphic graphs will be denoted by PING.
The literature points out to various examples of the PINGs. In this section we shall give some
of the known examples of the PINGs. The importance of quoting these examples lies in the
following:
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1° For every pair of nonisomorphic graphs a set of characteristics that are different
for the graphs from the pair, may be found. Therefore, every PING points out to the properties
of graphs that are not uniquely determined by its spectrum.

2° Every PING proves the inaccuracy of a certain number of statements of the type B
(see the following section).

We shall limit ourselves to the undirected graphs without loops or multiple edges.
(It is relatively easy to construct PINGs for other kinds of graphs. Besides what has been
said in 1.2., let us mention that in [71] the PING with directed graphs with 7 vertices has
been cited. See also [24]).

F. HARARY in [34] states that his conjecture, according to which isospectrality implies
the isomorphism of graphs, has been disproved by R. C. Bosg, who has given the PING with
16 vertices. According to [34], R. H. BRuck and A. J. HoFrMAN have also found the PINGs
with 16 vertices.

In the set of connected graphs with utmost 5 vertices isospectral graphs do not exist
which may be directly verified, for example, by a table of spectra of graphs from [10].
in [2] G. Baker gives the PING with connected graphs with 6 vertices which shows that the
number 5 cannot be replaced in the above by a bigger number.

If we consider graphs without assumption of connectednéss, then there exists the PING
with 5 vertices. This pair forms the graphs whose adjacency matrices are:

01010 0.1 11 1
10100 10000
4-[0 1 0 1 0f, A=|l1 000 0
't 01 0 0 1 0 00 of
“Qo‘oool 1 00 0 of.

This example can be generalized. The graph, having as components s isolated vertices and
one bicomplete graph Ky, #,, has, according to example 2.8, the spectrum containing numbers

\/nn, , —+/nn, and n,+n,—2+s numbers equal to 0. Consider the graph with the spectrum:

\/E, -\/Z and n—2 numbers equal to 0 (m a natural number). This spectrum may belong to
each of graphs of the above described type whose parameters n,, n,,s satisfy the equations
n,+n,+s=n, n,n,=m. These equations can have obviously several solutions in the set of
natural numbers (s can be equal to 0). The unique solution exists if n=k+/ (k,! natural
numbers, kl=m), where the quantity [k—/| is the smallest possible. In this case s=0 and
the spectrum determines a bicomplete graph. Thus, the bicomplete graph is determined by its
spectrum if and only if the minimum of [k—/| is reached for that pair (k,7) from
{(k, D) | kI=n,n,} for which k=n, and /=n,.

From these examples we see that the information on the connectedness of the graph
is not, in general case, contained in the spectrum of the graph. If we consider any narrower
class of graphs (for example, the class of regular graphs), the information on the connec-
tedness can be attained from the spectrum (see Theorem 4.10). It is of interest that the

function B;‘ (G), described in 1.1, contains in general case the information on the connectedness
(see [100], Theorem 6).

In [91] the PING with trees with 12 vertices is given. The mentioned trees have also
the same sets of vertex degrees. The author expresses his pessimism in relation to the pos-
sibility of solving the graph isomorphism problem by spectra, even in the case when,
apart from the spectrum, some additional information on the graph are supplied.

M. FisHER, who encountered the graph isospectrality problem at the investigation of
membrane vibration problem [31], has considered graphs with the following restrictions:
. 1° graph does not contain & vertex of degree 1, 2° graph is planar, and some others. He has
constructed an infinite sequence of PINGs satisfying conditions 1° and 2°. The PINGs from the
sequence have 5n (n=3, 4,...) vertices. It was established, however, that graphs satisfying
condition 1° and having at most 6 vertices, are determined by their spectra.
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An infinite sequence of sets of mutually non-isomorphic isospectral graphs is given
‘by R. H. Bruck in [7].

It seems that the PINGs with graphs having a great number of vertices are an usual
occurrence. Interesting data about the statistic of the PINGs are given by G. BAKER in [2].
Using a computer, the author has established that in a set of 1443 graphs with relatively
small number of vertices there are 120 pairs, 5 triplets and 1 quadruplet of isospectral non-
isomorphic graphs.

The PINGs are known also in the set of regular graphs. Exceptional graphs, having
16, 28 and 64 vertices, from Theorems 3.5, 3.6 and 3.16 belong to such PINGs. In Theorems
3.8, 3.9 and 3.10 some classes of isospectral regular graphs are defined too.

If the PING with n vertices is known, the PING with m (m>n) vertices can easily be
constructed by adding an arbitrary graph with m—n vertices as a new component to each
graph from the pair, Also from the PING with regular graphs of degree greater than 2 we
can construct another PING with graphs having more vertices, if we take line-graphs of the
graphs from the given PING.

3.2. Characterizations by spectra

As it has been already said, a graph is not, in general, characterized by its
spectrum. Nevertheless, the characterizations of graphs by spectra are possible
if we introduce some restrictions.

Let §={G} be a family of finite graphs. We shall consider the fol-
lowing problems:

1° For the given family § let us determine the graphs from & which
can be characterized by their spectra with respect to graphs from §. The
answers to this question lead to the Theorems of the following type (type A):
Let G, H=G. If G and H are isospectral graphs, then they are isomorphic too.
Such a statement will be denoted by 4 (g, G).

2° Determine the subfamilies of & not containing the PINGs. To this
group theorems of the following type (type B) belong: Let % be a given family
of graphs. Non-isomorphic graphs from S have different spectra. The ab-
breviation for such a statement is B (%6).

3° Determine all graphs from & having a given spectrum. The correspon-
dent theorems are of the following type (type C): Let G, HEG and let F6CG.
If H and G are isospectral, then H& 6. We denote such a statement by
c (&, G, ).

In further text ¢ represents the set of all finite undirected graphs with-
out loops or multiple edges.

3.2.1. As a particular answer to the first question we quote certain graphs,
i. e., classes of graphs, which are characterized by their spectra.

3.2.1.1. The spectrum can characterize all those graphs determined by the
number of vertices and the number of edges because these numbers are deter-
minable by the spectra (see 4.1). To this group belong: graphs without
edges, graphs with one edge as well as complements of these graphs.

3.2.1.2. Regular graphs of degree 1, 2, n—3 and n—2 (n the number of vertices)
are determined by the spectrum (for degrees 0 and n—1 see 3.2.1.1.). The
regularity of the graph can be established by the spectrum (see Theorem 4.10).
Since there exists only one regular graph of degree 1 (for the given even
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number of vertices), the statement is clear in this case. Since the spectra of
regular graphs and their complements are mutually determined (Theorem 2.10),
this statement is transferred to the graphs of degree n-—2).

The case of graphs of degree 2, i.e. n—3, is treated in [30], where the
following theorem has been proved.

Theorem 3.1. The connected regular undirected graph G without loops or multiple
edges with n vertices of degree n—3 is fully determined by its spectrum.

The author, in fact, proves the accuracy of the statement 4 (R, G), where
R is the set of regular graphs (possible with multiple edges). We shall prove
the similar theorem formulated for graphs of degree 2 with a new proof of
the part which is equivalent to the statement of Theorem 3.1.

Theorem 3.2. If G is a regular graph of degree 2, then A(G, G).

Proof. Let H (H=G) be a graph isospectral with G. According to theo-
rem 4.10, we can establish that H is regular of degree 2, because this holds
for G. Thus, both G and H have, as components cycles. It is necessary to prove
still that G apd H contain the same cycles. According to Theorem 4.11 the
length and the number of the shortest cycles of a regular graph is determinable
by the spectrum, and these numbers will naturally be the same for G and H.
Then let us delete from both graphs all the shortest eycles and also from ' the
spectra the eigenvalues corresponding to these cycles. The described procedure
is iterated until all cycles of graphs G and H are recorded.

This completes the proof of the Theorem.
3.2.1.3. From [30] we note the following result.

Theorem 3.3. The graph G (GER) has the characteristical polynomial Pg()\)=
k—1
=()\+-;i—n) (7\+—Z—) W=k if and only if G has n vertices and can be rep-

resented as V-product of k graphs, each containing only a constant number of
isolated vertices.

Complement G of the graph G from this theorem has k components,

each representing a complete graph with % vertices. Since G and G are regular
graphs, it follows from Theorem 3.3, that graphs representing a direct sum of
several identical complete graphs are determined by their spectra too. We shall

now prove that the direct sum of the arbitrary complete graphs is determined
by its spectrum.

Theorem 3.4. The graph G (GEG) has the spectrum containing the natural numbers

n—1,...,m—1, s numbers equal to O, and n,+ - - - +n,.—1 numbers equal
to —1, if and only if G can be represented as a direct sum of s isolated vertices
and k complete graphs having n,, ..., n, vertices respectively.

Proof. According to Example 2.8., the complete graph with n(n>1)
vertices has the spectrum containing the number n—1 as well as n—1 numbers
equal to —1. Therefrom the first part of the theorem follows.

Suppose now that G has the spectrum described in the theorem. Then G,
according to Theorem 1.8, cannot contain, as a subgraph, the bicomplete graph
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K, , because the smallest eigenvalue of K, , is equal to —+/2 and this eigen-
value of G is equal to —1. Non-appearance of K, , implies that the adjacency
relation of vertices ‘n G is transitive. This relation is, naturally, symmetric and
it can be made reflexive too by adding a loop to each vertex of G. Thus, the
adjacency relation is an equivalence. Vertices, corresponding to the classes of
the equivalence, form complete graphs or isolated vertices. Complete graphs
contain respectively n,, ..., n, vertices and the number of isolated vertices is
equal to s.

This completes the proof of the Theorem.

The transition to the complement of the graph from this Theorem is not
always successful as it has been shown in 3.1. for bicomplete graphs.

3.2.1.4. A group of American and other mathematicians has investigated the
question to what extent regular connected graphs are determined by their dist-
inct eigenvalues. In [42] A. J. HOFFMAN has noticed that the investigations
from [87] lead to the above statement if G is the line graph of the regular
bicomplete graph as well as that the results from [8], [9], [11], [36], [37], [86],
imply this statement for the case when G is the line graph of the complete
graph. According to Theorem 4.10, these results can take the following form.

Theorem 3.5. Let G be the line graph of the bicomplete graph K, ,(n#4).
Then A (G, G) holds.

Theorem 3.6. Let G be the line graph of a complete graph with n(n;é8) vertices.
Then A(G, G) holds.

We shall now prove a generalization of Theorem 3.5. L (G) denotes the
line graph of the graph G.

Theorem 3.7. Let G =L (Ky,, ), where n,+n,=19 and where
{n,, n}#{2s*+s, 25*—s},
s being a natural number. Then A (G, G) holdsV.

Proof. The edges of K, ,,, can be represented by pairs (i,j) (i=1,...,
n, j=1, ..., n,), which are the vertices of L (Ka, ). TWo vertices (i,) and
(k, I) are adjacent in L (K,,,,) if and only if either i=k, j#I or ik, j=I.
According to the definition of the sum of graphs (see 5. 1), L (Ky,,n,) can be
represented as the sum of two complete graphs having »,, i.e., n, vertices.
According to Theorem 5.3 and on the basis of the known spectra of com-
plete graphs, we see that the spectrum of L (K,, ,,) contains in the case n,,n,>1
the following numbers: A=n,+n,—2, A,=n—2, \y=n,—2 and A\ =—2 with
multiplicities p,=1, p,=n,—1, p;=n,—1 and p,=n, n,—m—n,+1 respectively.
(We omit the case when one of the numbers n,, n, is equal to 1, because then
L (K, n,) is a complete graph, determined by its spectrum).

Let graph H have the described spectrum. According to Theorem 4.10, H
is a regular connected graph. The degree of the graph is not less than 17. In
virtue of Theorem 3.14, we can take H=L (F), where F is a graph without
isolated vertices.

1) This theorem was proved indepedently of [26].



Graphs and their spectra 25

According to a lemma from [72], a regular graph can be the line graph
for a regular or for a semi-regular bipartite graph. (The semi regular bipartite
* graph has two groups of vertices, where none pair of vertices from the same
group is adjacent and the vertex degrees in each group are mutually equal).

Suppose that F is regular. Then n,+n, must be an even number and the
degree of F is r=£’—;'-”~, The number of edges in F is equal to the number
of vertices in H, i.e. m=n,n,. The number of vertices is then n=£’ﬁ=m,
Thus, 4n,n, must be divisible by n,+n,. Using Theorem 3.12 we rsee ?ﬁ;tnzF

. . n +n n,—n Hy— n .
contains in the spectrum the numbers: — . 2z, - 5 z =2 e , 177 with mul-
2 2

tiplicities 1, m,—1, n,—1 and n,nz——n,—n2+1—(nln,_—

4nn, ) —1— (n,—n,)’
. . . ny+n, n,+n,
This implies n =n,, since the case (n,—n,)*=n+n, leads to {n, n,}=
{252+, 25*—s} what is in contradiction with the assumption of the theorem.
However, H has then the spectrum of L (K, ) and, according to Theorem 3.5,
we have H=L (K,,»)-

Suppose now that F is semi-regular bipartite. Let F have n,” mutually non-
adjacent vertices of degree r,’ and n,’ mutually non-adjacent vertices of degree
r,', where n,’>n,’. Then we have

! ’ ! 4 ’ ’ 7 ’
(3.1 mry=nyry, By Iy =nn; Py +ry =n+n;.

On the basis of Theorem 3.13, the spectrum of L (F) must contain the
number r,’—2. By comparison with the spectrum of G we have the following
possibilities: 1° r’=n;; 2° r'=n, and 3° r/’=n,+n,. According to (3.1), the
alternative 3° leads to an absurd situation and 1° and 2° yield the same
solution F=K,, , ,,.

This completes the proof of Theorem 3.7.

3.2.2. A few statements of the type B are known. In [90] J. TURNER proves
the statement B (&), where % is the set of graphs with a prime number of
vertices and with a certain symmetry of vertices. Other known statements of
the type B are reduced to one which can be formulated on the basis of up to

now exposed results.
3.2.3. We quote some known statements of the type C.

On the basis of the results from [42] and Theorem 4.10, the following
theorem holds.
Theorem 3.8. Let G be the line graph of the graph of a projective plane of

order n and F6 the set of line graphs of graphs of all projective planes of order n.
Then C(B, G, F6) holds.

According to [41] we have the following theorem.
Theorem 3.9. Let G be the line graph of a finite afine plane of order n and F4

the set of line graphs of graphs of all finite afine plane of order n. Then
C(%, G, F6) holds.

Starting from the results of [43] we obtain the following theorem.
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Theorem 3.10. Let G be the line graph of a symmetric balanced incomplete
block design with parameters v, k, A ((v, k, \W£(4, 3, 2)) and F6 the set of line
graphs of all block designs with the given parameters. Then C(%, G, F6) holds.

Various cases of characterization can be found also in [25].

3.3. Characterizations by spectral properties. Line graphs.

The following problems belong to this group: An information on the
spectrum of the graph is known. Determine all graphs having the given spectral
property.

Sometimes poor information on the spectrum determines fully the graph.
For example if G is a graph with »n vertices whose index is equal to n—I1,
then G is a complete graph. In [39] the examples of characterization of graphs
by so-called the polynomial of the graph are given. Nevertheless, in majority
of cases the given spectral property determines a class of graphs.

The following problem has been considered in several papers: Determine
the class of graphs for which the smallest eigenvalue q from the spectrum satisfies
the inequality q= —2. The expository paper [44] is related mainly to this pro-
blem. The following theorem is given.

Theorem 3.11. For the smallest eigenvalue q from the spectrum of the line graph
L (G) of the arbitrary graph G the inequality q=—2 holds. If G has more edges
than vertices, then q=—2.

The characteristic polynom1a1 of L(G) can be expressed by the characte-
ristic polynomial of G if G is a regular graph. The following theorem is
proved in [80].

Theorem 3.12. If G is a regular graph of degree r, with n vertices and
m(=%nr) edges, the following relation holds:

3.2) Py =QA+2)y""Py(A—r+2).

In [96}-and [100] the analogous relation for characteristic polynomials of
matrices D+A4 and D—A (D the matrix of vertex degrees, 4 the adjacency
matrix) are given.

We shall show that for some more graphs, except for the regular graphs,
a relation between Pg(A) and P;(;(A) can be determined.

Theorem 3.13. Let G be a semi-regular bipartite graph with n, mutually non-adjacent
vertices of degree r, and n, mutually non-adjacent vertices of degree r,, where
n =n,. Then the relation

G ProM=0+28 [~ T Po (Ve m) Po (=),

holds, where a;=h—r,+2(i=1,2) and B=nr,—n—n,.
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Proof. 1t is known that for the graph G with n vertices and m edges
the relation

3.4 P o(A—2)=N-"det(A\[—A—D)
holds. For the graph from the theorem we have
det (M—A—D)=det“ A=) I —&
—K  (—r)

where K is a n, x n, matrix with entries from the set {0, 1}. It is known that

det ;

M N _
— det M det (Q—PM ™1 N),
> QH et M det (Q—PM~'N)

for a non-singular square matrix M ([32], vol. I, p. 46). Therefore we have

(3.5) det (\[—A— D) = (\—r,)" det (()\——rz)I,,z—K;I"—‘—K')
—r

1

=(A—r)m—nr2det (A—r,) A\—r,)I,,—KK')
= (A —ry" P (A—ry) (A—r3)).

The characteristic polynomial Pggs (A) of the matrix KK’ can be expressed
by the characteristic. polynomial of the adjacency matrix 4. At first we have

0 K’ K'K 0
K 0 0 KK’

A*= .

.

|

The relation Pgsx (A) =N1—"2 Pggr(2) is known in the matrix theory (see,
for example, [59], p.24). Since P4z (A) = Px+x (A) Pxx/ (3) and since the eigenvalues
of A% are squares of eigenvalues of 4, ie., Po(A)=(—DmtmP, (AP, (—N),
we have

36 P =TED [y an P (VR P, (— /).

M —ny

Combining expressions (3.4) — (3.6) we get (3.3).
This completes the proof of the theorem.

In [44] and [45] the following theorem from, apparently, up to now
unpublished paper [47] is mentioned:

Theorem 3.14. Let G be a regular connected graph of degree not less than 17
and with q=—2. Then G is either the complement of the regular graph of degree
1 or a line graph. Number 17 is the best possible.

An analogous theorem without the assumption of regularity is given
in [72]. The degree of vertex u is denoted by d(w). Let d(G) denote the
smallest vertex degree from G and A (u, v) the number of vertices adjacent to
both of vertices # and v.

Theorem 3.15. If for the graph G the following holds: a) d(G)>43, b) g=—2,
c) for non-adjacent vertices u; and u, it is A (uy, w))<d(u)—2(i=1,2), then
there exists a graph H such that G =L (H). Inversely, if G=L(H) with d(H)>3,
then G satisfies conditions b) and c).
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3.4. Characterizations of the cubic lattice graph

This section is contained in [19]. We give only the survey of results.

A cubic lattice graph with characteristic n(n>1) is a graph whose vertices
are all the »® ordered triplets of n symbols, with two triplets adjacent if and
only if they differ in exactly one coordinate. Let d(x, y) denote the distance
between two vertices x and y, A (x,y) the number of vertices adjacent to
both x and y, and n,(x) the number of vertices at the distance 2 from x.
We list some properties of the cubic lattice graph G: (P,) The number of
vertices is n3; (P,) G is connected and regular; (P;) n,(x)=3(n—1)? for all
x in G; (P;’)A (x, y)>1 for all x, y such that d(x, y)=2; (P,) The distinct
eigenvalues of the adjacency matrix of G are 3n—3, 2n—3, n—3, —3; (P)
The adjacency matrix of G has eigenvalues A.=3n—3—fn (f=0, 1, 2, 3) with
multiplicities p,— ( ; ) (n—1)".

Theorem 3.16. Graph G is the cubic lattice graph with characteristic n(n#4) if
and only if it has properties (P,), (P,), (Py) and (P)).

Theorem 3.17. Graph G is the cubic lattice graph with the characteristic n(n#4)
if and only if it has properties (P,), (P,), (Ps ) and 2).

Theorem 3.18. Graph G is the cubic lattice graph with characteristic n(n#4) if

L

and only if it has properties (P) and (P3).
It can be proved that properties (P,), (P,) and (P,) are equivalent with \P).

Theorem 3.16 was proved in [56] for n>7. A similar result for the
tetrahedral graph can be found in [5]. A method for determination of eigenvalues
in similar graphs is described in [66].

4. DETERMINATION OF THE STRUCTURAL DETAILS OF A GRAPH BY THE USE
OF THE SPECTRUM OF THE GRAPH

In this Chapter we expose theorems which enable the determination of
various structural properties of a graph provided the spectrum of the graph is
known. In some theorems we use the eigenvectors of the adjacency matrix too.
Some structural properties are not, naturally, uniquely determined by the
spectrum, but we can often in these cases also precise, on the basis of the
spectrum, the field of variation of these properties. The contents of this Chapter,
together with that of the preceding one, represent the basis for the investigation
of graphs by use of spectra. Section 4.5. contains concluding remarks on the
spectral method and on the possibilities of its application.

In all the theorems we assume that either the spectrum or the eigenvectors
of the adjacency matrix of a graph, or both, are given and that a class of
graphs to which the given graph belongs is precised. If the spectrum of the
graph is given, we assume that its characteristic polynomial is known too, and
vice versa. The algebraic and numerical problems, which appear here, are assumed
to be solved. Note that in some cases the class of graphs to which the graph
with the given spectrum belongs can be determined by the spectrums.
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4.1. Analysis of an arbitrary graph structure

Let the characteristic polynomial of an arbitrary graph be given:
4.1) PoA)=detAI—A)=N+a N1+ ... +a,.
Before we restrict ourselves to undirected graphs without loops or multiple edges,

it is necessary-to list the following possibilities for graph analysis:

1° The number of vertices is equal to the degree n of the characteristic
polynomial. The number of loops is equal to the trace of the adjacency matrix,
i.e. to the quantity —a,.

2° If we know that the graph G belongs to the class of graphs in which
the number of loops is constant for every vertex, then the characteristic polynomial
of the graph H, obtained from G by deleting all loops, can be determined. Let

every vertex in G have £ loops. Then h=—2 and Py(\)=Pgs(r+h).
n

" 3° If G belongs to the class of graphs witout loops, then G is a digraph
if and only if a,=0. This fact can be easily seen by considering all principal
minors of the second order of the adjacency matrix.

4° H. - J. FINcK shows in [30], that a graph without multiple edges
can be recognized in the class of regular graphs without loops if the spectrum

is known. The formula z=—-l (nr+2a,) was proved, where z denotes the
number of cycles of length 2 and r is the index of the graph. Graph is
w1thout multiple edges if and only if z=0.

We consider further only undirected graphs without lpoops or multiple
edges. At present, g, =0 always holds.

L.CoLLaTz and U. SINoGowITz give in [10] the following statements:
1° The number of edges of the graph is equal to —a,; 2° The number of

triangles in the graph is equal to —%aﬂv
H. SacHs proved in [78] the following theorem:

Theorem 4.1. The length k of the shortest cycle of .an odd length in the graph G
is equal to the index of the first of the coefficients a,, as, a,, ... which is dif-
ferent from zero; the number of all shortest cycles of odd' length is equal

1
to ——a,.
5 %
All the results listed up to now in this Section are contained in Theorems

1.1 and 1.2. Other specializations of these theorems do not lead to statements
which can be used in general case.

According to Theorem 2.1, it is possible to determine by spectrum of
the graph the number of closed walks in the graph. This number is equal to

tr Ak = Z AF (k natural number).
i=1
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An example of interest, of the connection between the structure and the
spectrum of a graph is given by the following theorem.

Theorem 4.2. A graph, containing at least one edge, is bipartite if and only if
its spectrum, taken as a set of points on the number axis, is symmetric with respect
to the zero point.

This theorem is, in various versions and for various classes of graphs,
known in the literature ([10], [39], [60], [78], [79]). In [12] a new proof of it
is given. However, by the method of [12] it is possible to prove also the
following theorem.

Theorem 4.3. The connected graph, containing at least one edge, with the index
r is bipartite if and only if its spectrum contains the number —r.

Proof. According to Theorem 4.2, it is sufficient to prove that the bipartity
of the graph is a consequence of the presence of the number —r in the spectrum.
The eigenvalue r is simple according to Theorem 1.4. The number —r is also
a simple eigenvalue, because the opposite case would be in collision with
Theorem 1.4. Hence, the adjacency matrix 4 has exactly- two eigenvalues of
the maximal modulus r. Thus, according to Theorem 1.4. there exists a permu-
tation matrix P such that

piap—||® Ao
A, 0

2

where the square zero matrices are on the main diagonal.

This completes the proof of the theorem.

This theorem is known in the literature only for regular graphs ({391, [79)).

The spectrum provides further information about the graph in the following
way. By CAYLEY-HAMILTON’s theorem from the matrix theory we get in virtue
of (4.1), the following relations:

(4.2) Ak g AmhlL L g 4E=0 (k=0 1, ...).

Since the adjacency matrix is a real symmetric matrix, the roots of its minimal
polynomial are also roots of the characteristic polynomials (and vice versa) and
are mutually distinct. So we have the relations

(4.3) b A"tk b A" TE 1y L 4 b AF—0 (k=0,1..),

where by, b, ..., b,, are coefficients of the minimal polynomial and m is the
number of mutually distinct eigenvalues in the spectrum of the graph. By means
of Theorem 2.1 several information on graph can be obtained from (4.2) and
(4.3) (sce, for example, [19], where a similar relation was used).

The spectrum of the graph allows one to obtain some inequalities for
several characteristics of the graph. We list some possibilities.

L. CoLLaTZ and U. SiNnoGgowitz give in [10] the following theorem.

Theorem 4.4. Let d_;,, d and d,.x be the minimal, mean and maximal value for
the degrees of vertices in the connected graph G whose index is equal to r. Then

d. <d<r< dpax- Equality holds in d<r if.and only if G is a regular graph.

min =
This theorem represents, in fact, a reformulation of a theorem from the
matrix theory (see, for example, [32], vol II, p. 63). It is of interest to note
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that applications of several other inequalities for eigenvalues of matrices do
not provide better results.

" Theorem 4.5. If the graph G has m mutually different eigenvalues, then G is either
an unconnected graph or the inequality D<m—1 holds for its diameter D.

We omit the proof since there is an analogous theorem in the matrix
theory (see, for example, [59], p. 125).

H. S. WILF proves in [94] the following theorem.

Theorem 4.6. If v is the chromatic number and r the index of a connected graph,
then y<1+r, where equality holds if and only if the graph is complete or if it
represents a cycle of odd length.

Note that y<1+r holds also for undirected graphs but then the condi-
tions for equality are formally more complex. J. MITCHEM [62] and D.R. Lick [57]
generalized this result in a certain way. See also [49], [50].

According to Theorems 4.6. and 4.2., we have the following theorem.

Theorem 4.7. The chromatic number v can be determined by the graph spestrum
if the graph has the index r with r<3. If the graph is connected, the same
statement holds also for r=3. '

On the basis of the spectrum the inequalities for the number of internal
stability « (G) and the number & (G) of vertices of the maximal complete subgraph
of the graph G can be obtained.

Theorem 4.8. The number of internal stability o (G) of the graph G satisfies the
inequality «(G)<p,+min (p..,p), where p_,p,,p, denote the numbers of eigen-
values, smaller, equal and greater than zero in the spectrum of G.

Theorem 4.9, Let p,._1,p—1 and p,-_1 denote the numbers of eigenvalues smaller,
equal and greater than —1 in the spectrum of the graph G. \ represents the smallest
eigenvalue greater than —1. Let us further have p=p,._+p_1+1 and s=
=min (P, py~—-1+p-1,r+1), where r is the index of G. If k(G) denotes the
number of vertices of the maximal complete subgraph of G, then the inequality

k(G)g{S’ s<p
S, §=p,
holds, where o, =0 for A\=p—1 and a;=1 for A>p—1.

The proofs of these two theorems use Theorem 1.9 [22]. In [22] an ine-
quality for the chromatic number of a graph is obtained too.

~ The connection between the automorphism group and the spectrum of a
graph has been studied in {10], [28], [64], [65], [68], [69], [70].
4.2, Analysis of the regular graph structure

We begin with the question in which way a regular graph can be reco-
gnized by its spectrum.
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Theorem 4.10. The spectrum of a graph contains information about its possible
regularity. Let {h =r, X;, ..., A} be the spectrum of the graph G, where r denotes
the index of G. G is regular if and only if

1 n
44y | — Sar-r.
‘ Y (PN

If (4.4) holds and if r has multiplicity p, the graph has p components.

This theorem is implicitely contained in [10]. See also [19]. Theorem 4.10 is
quite important in several places in this paper. Note that Theorem 4.10 enables
the determination of the cyclomatic number and the establishment of the exis-
tence of the Eulerian closed walks in a graph provided we have primarily
established, by the mentioned theorem, the graph to be regular.

In the following theorems we require that graph is: 1° regular, or 2° regular
and connected. These conditions can be replaced by the following: 1° The spectrum
of the graph satisfies relation (4.4), 2° The spectrum of the graph satisfies
relation (4.4) and r is a simple eigenvalue. Thus, in the following theorems the
non-spectral information about the graph structure appears only apparently.

In [78] H. SAcHs has arrived at the following result.
Theorem 4.11. If G is a regular graph, then by P;()) the length t of the shortest
cycle in G as well as the number of cycles of length h (h<2t—1) can be determined.
Further, we have the following important result of A.J. HorrMaN [39]:
Theorem 4.12. For the graph G with adjacency matrix A there exists a polynomia

P(x), such that P(A)=J if and only if G is regular and connected. In this case
we have

(x—2y)- - - (x—2p)
4.5 Px)="
43) ¢ (r—2y)- - -(r—im)
where n is the number of vertices, r is the index and A\ =r, A, ..., A, are. all
mutually distinct eigenvalues from the spectrum of G.

This result was extended in [40] by A.J. HoFFMAN and M.H. MCANDREW
to directed graphs.

This theorem provides great possibilities for investigation of the structure
of graphs by means of spectra. The examples of such an utilization of The-
orem 4.12 are found in [19] as well as in the papers quoted there.

Further, it is know that the characteristic polynomial of a regular graph
contains information about the number of spanning trees in the graph. This
fact is a direct consequence of the well known theorem of KIRCHHOFF—TRENT
(see, for example; [3], p. 152). It is established in [52], where it is noticed that
the number of spanning trees of a regular ‘graph G of degree r with n vertices
is given by the formula
(4.6) D(G) =1

n

P ().

A more general result is given in [100]. On the basis of (1.2) we can
formulate Theorem 1 from {100], for the regular graphs in the following way.
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Theorem 4.13. Let G be a regular graph of dergee r with X being its set 0p
vertices; let YCX and let Gy represent the graph obtained by mutually iden
tifying all vertices from Y and by deleting all the loops then occurring. Then-

4.7) > D (Gy) =L P,
e “

where D (H) denotes the number of spanning trees in H and | Y | denotes the number
of elements of the set Y.

For k=1 in the sum on the left side every tree of G is taken exastly n
times and therefore (4.7) reduces to (4.6).

ExampLE 4.1. The characteristic polynomial of the complete graph G, with » vertices and
the regular graph G, of degree n—2 with n vertices were determined in example 2.9 and
according to (4.6) we have D (G,) = n?-?% (the well known CaAviey’s formula) and D (G, =
n n
- =2
=(n—-2) 2p?
Further examples of determining the number of trees are given in [21].

In [29] H.-J. Finck and G. GROHMANN prove the following theorem
by use of which it can be established whether or not a graph is V-prime.

Theorem 4.14. Let G be a regular connected graph of degree r with n vertices.
G can be represented as V -product of p+1 V-prime graphs if and only
if r—n is a p-fold eigenvalue in the spectrum of G.

ExampLe 4.2. (H.—J. FINck and G. GROHMANN) If the number r—n exists in the spectrum
of a regular graph, then r—n=—r, i. e. n<2r. Thus almost all regular graphs of a given
degree r are y-prime.

ExampLE 4.3. Determine all regular graphs G being not y-prime and belonging to the set of
line-graphs.

According to Theorem 3.11 we have g=—2 for the smallest eigenvalue ¢ from the
spectrum of G. Thus, G is not y-prime if either r—n=—1 or r—n=—2, holds. In the first
case we have r=n—1, i. e., G is the complete graph with n>1. In the second case n is even
and according to [44] G does not belong to the set of line graphs for n>6. Hence, G can be,
except for complete graphs, a cycle of length 4 and a regular graph of degree 4 with 6 vertices.

In [30] H.-J. FINCK investigates the connection between the chromatic
number and the spectrum for regular graphs which are developing into product
of two or more V - prime factors. The main results of this paper are expressed
by the following theorem.

Theorem 4.15. Let G be a regular connected graph of degree r with n vertices
(n>r+1). Let p, be the algebraic multiplicity of the eigenvalue A from the
spectrum of G. Then the following relations for the chromatic number v of G hold:

4.8) Y20, _,t+1;
(4.9) Y22(p,_n+ 1>~[L];
n—r—1
(4.10) Yz3(p,_,,+1)—-2[—’.’°——]—
n—r—1
. . 2p-, 2p; . 2 =_1_ 1))
c"'_"mm([n—r+1:|’ [n—-r—l]) v=,§,+2pv (ss 2(1+( D )),

3 Publikacije
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4.11) Y=t ) (r+1)—np,_.;

4.12) 'Y_S_(Pr_n“‘l)r—npr_n_;_[ Py ]+p2+[p_']'
n—r—1 3

The inequality (4.10) is improved in [54].

In [30] a formula, giving the unique connection between the chromatic
number and the spectrum of a regular graph of degree n—3 with n vertices,
is proved too.

In [79] and [80] H. SacHs describes the use of the characteristic polynomial
of a graph for a special colouring of vertices of the graph. This colouring is
related to the problem of factorization of a graph.

In [33], [58] and [83] — [85] (J. J. SEIDEL and others) the properties of
strongly regular graphs (introduced in [4]), are connected with the spectrum of
(—1, 1, 0) — adjacency matrix of the graph. The results can be reformulated
in terms of the spectrum of the usual adjacency matrix.

4.3. Graph analysis by means of the spectrum and of the eigenvectors

If besides the spectrum of the graph, the eigenvectors of the adjacency
matrix are known, the number of statements which can be made about the
graph structure increases naturally. Sometimes valuable information about the
graph can be attained by knowing eigenvectors only. Such a result is given by
the following theorem.

Theorem 4.16. A graph is regular if and only if its adjacency matrix has an
eigenvector whose all coordinates are equal to 1.

This theorem is known in the matrix theory (see, for example, [59], p- 133).

In [3], p. 131, the following result of T. H. WEI {92] is noticed:

Let N,; be the number of walks of length k starting from the vertex
Nt When k— + oo, the

n

2 N

i-1

vector (S, ..., S, tends towards the eigenvector of the graph index.

The connectedness of the undirected graph can be investigated by Theorem
1.10. Combining Theorems 1.4 and 1.10 we have the following theorem.

x; (i=1,...,n) of a connected graph. Let s,,=

Theorem 4.17. An undirected graph is connected if and only if its index is a
simple eigenvalue with a positive eigenvector.
Theorem 1.11 can also be translated in the graph theory language.

Theorem 4.18. If the index of an undirected graph G has the multiplicity p and
if a positive eigenvector corresponds to it, then G has p components.

These theorems are used in 5.3.

In papers [36], [37], [43], (441, [45], [47], [72] of A. J. HorfMaN and D. E. Ray-CHA-
UDHURI the following interesting method for obtaining information about the graph by means
of the spectrum is used.

Let G be a regular graph having the smallest eigenvalue g=—2, and let H be the
graph for which g=—2 also holds and where corresponding eigenvector x has coordinates
whose sum is not equal to zero. Then, according to Theorem 1.8, H cannot be a subgraph



Graphs and their spectra 35

of G because in this case the vector x would be orthogonal to the projection of the eigenvector
of the index of G on the subspace corresponding to H. However, the eigenvector of the index
of G has all coordinates equal to 1 and the orthogonality condition leads to the fact that the
sum of coordinates of x is equal to zero, which is contradictory to the assumption.

On the basis of this and on the basis of a similar principle ([43]), an extensive list of
impossible subgraphs for regular graphs with g=—2 is established in the mentioned papers.
It would be of interest to form similar lists for other values of ¢. Some impossible subgraphs
under other conditions are given in [51].

4.4. Establishment of non-existence of some properties for a given graph

Let S be a spectral and Q a structural property of a graph and let S be a necessary
condition for Q. Then the non-existence of S implies non-existence of Q. The statements of
this type supply some information about the graph structure. In this Section we quote some
theorems of this kind.

To this group belong, in fact, all statements related to the impossible subgraphs. They
can be expressed by the following theorem.

Theorem 4.19. If g=—2 for the regular graph G, then G contains, as a subgraph, none of
graphs listed in previously cited papers.

A. J. HOFFMAN ([44], [45] and [48]) has posed and partially solved the following problem.
Let G be a given graph, let H be any graph containing G as a subgraph and let Hy be an
arbitrary regular graph containing G as a subgraph. d(F) denotes the smallest vertex degree
for the graph F and A (F) the smallest eigenvalue from the spectrum of F. Determine:

Ap(G)=suph(Hp), w(@= lim sup \(H), up(G)= lim sup A(Hp).
Hp d_>°°d(H1§ J d—oo d(HR)>4
>

Familiarity with these quantiti'es (existing for any graph G) leads, for example, to the
statements of the iollowing type:

Theorem 4.20. If G is a regular graph for which q>\;(H) holds, then G does not contain the
graph H as a subgraph.

Contrary to theorems from 4.1 and 4.2. theorems from this Section cannot always be
applied. However, in special cases they can be very useful. We quote some. possibilities more:

1° As it was already said, the information about connectedness of a graph is not in
general case contained in the spectrum of the graph. However, if, for example, the index of
the graph is not a simple eigenvalue, then the graph is obviously unconnected.

2° Corollary 2 of Theorem 2.9 can be represented in the following way: The graph G,
having eigenvalues A, and A; (A;+%;=—1) whose multiplicities differ for more than 1, is not
self-complementary.

3° The following statement is in [96] (E. V. VaHOVsKY) formulated for the matrix
A+D: Let Y be a subset of the set of vertices of the graph G and let the vertices x, and x,,
not belonging to Y, be adjacent to each of vertices from Y, and solely to them. Then the
spectrum of G contains the number 0 if x, and x, are not adjacent and the number —1 if
x, and x, are adjacent.

4.5. On possibilities of spectral method applications

On the basis of the exposed matter we consider that the main variant of
the spectral method is the one using the spectrum of the adjacency matrix of
the graph, though other matrices have the advantage in some problems.

Estimation of the importance of the spectral method will depend on the
number and importance of results which may by achieved by it. It seems that
only initial steps into the application of this method are made. An interesting

3*
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example of the application of the spectral method represents the investigation
of the existence of certain class of graphs (A. J. HOFFMAN and R. R. SINGLETON
[38], R. SINGLETON [88], W. BrROowN [6] and H. SACHS [77]). The results obtain-
ed by the spectral method are found, for example, in papers [14], [15], [17],
[201, [24], [36], [37], [55], [80], [94], [98], [99] and [100]. In this paper the
results from Chapter 2 (Theorem 2.5) from Chapter 4 (examples 4.1 and 4.3)
and from Chapter 5 (Theorems 5.5—5.11) belong to this group.

Note that several known results in graph theory can be deduced by the
spectral method.
There are two aspects of application of the spectral method.

In the first case we have the following scheme. By the group of structural pro-
perties A a class of graphs is precised and we search for the structural proper-
ties of this class of graphs from the group of structural properties B. By the
group 4 we determine the spectrum or some spectral properties of these graphs. From
the spectrum the interesting facts for the group of properties B may be read.

The use of this scheme requires the development of procedures for deter-
mining the spectra of graphs. In fact, the spectra are known only for certain
narrow classes of graphs. It would be of interest to compile all usable results
and statements from the theory of determinant and matrices. Of great impor-
tance are several compositions of graphs, as for example, are the product and
the sum of graphs, (see 5.1.) which enable the determination of the spectrum
of a compound graph by spectra of some simpler graphs.

The second aspect of the spectral method is related to the use of a computer.
If a concrete graph is given (not a class of graphs) and if it is necessary to
investigate some of its structural details, it is possible to use a computer under
the condition that the number of vertices is not too great. (If the graph has
less than, for instance, 10 vertices, majority of tasks can be solved by “hand”).
In the literature several computer algorithms for various problems on graphs
are described. The use of the spectral methods is probably inefficient for computer
solving of only one problem on the graph, because the numerical determination
of the spectrum on the computer can also take a long time. However, if it were
necessary to solve simultaneously several various problems on a graph, it seems
that the use of the spectral method could be taken into account. General testing
computer programme for the graphs could be made, which would provide on
the basis of the spectrum all information on the graph liable to be obtained
from the spectrum. Having in view the memory capacity and the rapidity of
recent computers, it seems that the spectral methods would provide satisfying
results for the graphs having 10—100 vertices.

5. ON A CLASS ON n-ARY OPERATIONS ON GRAPHS

This chapter describes an example of application of the spectral method,
by which some properties of a class of n-ary operations on graphs are examined.
The procedure is, basically, the following. We determine a relation between the
spectrum of the graph G, obtained as the result of n-ary operation and spectra
of graphs G, ..., G, on which operation is made. Using theorems, proving the
connection between the spectral and the structural properties of graphs, we
connect, turther, the structural properties of G with structural properties of graph
G,, ..., G,. Mainly, connectedness, bipartity and the numbers of walks are
investigated. . .
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Operations from this Chapter represent a generalization of some opera-
tions described in literature.

This Chapter is related to papers [13], [14], [15], [16], and [20] and forms
an entirety with them.

5.1. Definitions of operations

We shall consider n-ary operations defined on the set of finite, undirected
graphs without loops or multiple edges, in which the result is a graph whose
set of vertices is equal to the Cartesian product of sets of vertices of graphs on
which the operation is made. Known operations of this kind are product, sum
and p-sum of graphs ([3], p. 23 and p. 53). In [15] definitions of these operations
are given too, as well as definitions of some of its generalizations. All the definitions
are formulated for undirected graphs without loops or multiple edges. However,
defined operations can be considered on some other class of graphs, too.

Note that p-sum, with its special cases, appears in several papers under several
names. So, for example, product of two graphs is called: product ([3], p. 23),
Cartesian product ([67]), KRONECKER's product ([93]), conjuction ([35]), cardinal
product ([23], [61]) and so on.The same may be said for the sum of graphs too.

In [15] the incomplete p-sum and the incomplete extended p-sum of graphs
are defined. Since the first of these operations is a special case of the second,
we consider only the latter. The following definition of the incomplete extended
p-sum (briefly: NEPS according to Serbo-Croat: nepotpuna profirena p-suma) is
different but equivalent with that from [15]. The equivalence will be shown in
the following Section (Theorem 5.1).

Let B be a set of n-tuples (8,, ..., B,) of symbols 0 and 1, which do not
contain n-tuple (0, ..., 0).

Definition 5.1. NEPS with the basis B of the graphs G,, ..., G, is the graph,
whose set of vertices is equal to the Cartesian product of the sets of vertices of
the graphs G, ,.., G, and in which two vertices (x,,...,x,) and (¥, ..., V,)
are adjacent if and only if there is a n-tuple (B,,...,pB,) in B such that x,=y,
holds exactly when B;=0 and x; is adjacent to y, in G; exactly when B,=1.

We shall quote also the Boolean operations on graphs. We give a defini-
tion, according to [20]. In [35] differently defined Boolean operations on graphs
are considered.

Definition 5.2. Let G,=(X,,U) (i=1, ..., n) be given graphs, where X, and U,
denote corresponding sets of vertices and of edges. If f(p,, ..., Dp,) is the arbi-
trary Boolean function (f:{0, 1}»—{0, 1}), the Boolean function G=f(G,, ..., G,)
of the graphs G, ,,,, G, is the graph G =(X, U), where X =X, x + - - x X, and where
U is defined in the following way. For arbitrary two vertices (x,, ..., x,) and
(15 --+» ¥y) from G the Boolean variables p,, ..., p, are defined where, for every
i, p;=1 if and only if x, and y; are adjacent in G,. The vertices (x, ...,X,) and
(15 - -+ y,) are adjacent in G if and only if, for every i, x,#y,and f(p, ..., P,)= 1.

The set of n-tuples, for which the Boolean function f(p,, ..., p,) takes
the value 1, we denote by F. We utilise also the abbreviation B=(B,, ....8,)-

Definition 5.3. NEPS with the basis B of graphs G,, ..., G, is corresponded to the
Boolean function f(G, ..., G,) (f(py>..-» P)E0), if B=F\(0, ..., 0).
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5.2. Adjacency matrices and spectra

Some data on adjacency matrices of product, sum and p-sum of graphs
are given in [16]. Except this, note that in [23] adjacency matrix for product
of graphs 1s also given. In [35] adjacency matrices of a number of binary opera-
tions on graphs are listed.

Adjacency matrices for the considered operations on graphs are expressed
in terms of the adjacency matrices of graphs, on which operations are made,
by the use of KRONECKER's multiplication of matrices. KRONECKER’s multipli-
cation of matrices will be denoted by ®. The properties of KRONECKER's product
of matrices, used in further text, are given in [13].

Theorem 5.1. NEPS G with basis B of graphs G,, ..., G,, whose adjacency
matrices are A,, ..., 4,, has the following adjacency matrix

(5.1) A= 2APR - - @40
gcB

Proof. Let in every of graphs G,, ..., G, vertices be ordered (numbered).
We shall give lexicographic order to the vertices of G (which represent the
ordered n-tuples of vertices of graphs G, ..., G,) and we form adjacency matrix
A according to this ordering.

If x and y are vertices of arbitrary graph with adjacency matrix A4, we
denote by (4),, the element of A from the row corresponding to x and column
corresponding to y.

In virtue of properties of KRONECKER’s product of matrices we then have
def
(5-2) = (A sty 01 = 2 A ()

If (x,...,x,) and (y,, ..., »,) are adjacent vertices, then, according to
the definition of NEPS, there is a n-tuple B in B such that x,=y, only for 3,=0
and such that x; is adjacent to y; only for B,=1. Such n-tuple is obvicusly,
unique in B. The corresponding summand in (5.2) is then equal to 1, because
each of the factors (4,%) ., is equal to 1. Namely, if B,=0, 4,% is equal to
the unit matrix, but then x;=y; also holds. For §;,=1, x; and y, are adjacent
vertices and we have (4,;%)*%i=(4)xy=1. All other summands in (5.2) are
equal to O and-we -have a=1.

Let now (x;, ..., x,) and (»,, ..., y,) be non-adjacent vertices. Then, for
every B from B there exists an i such that either B,=1 and x; is not adjacent
to y; or ;=0 and x,7%y,. Therefore, we have (4;%),,;,,=0 and a=0.

This completes the proof of the theorem.

The adjacency matrix of the p-sum is obtained from (5.1) if B contains
all n-tuples with p unities. By further specialization, we get the product of graphs
for n=2, p=2 and the sum of graphs for n=2, p=1.

The following theorem is proved in [20].

Theorem 5.2. The Boolean function G=f(G,, ..., G, of graphs G, ...,G,
having adjacency matrices A,, ..., A,, has the adjacency matrix

(53) A=0+ z A1[31]® s ®An[3n]’
BeEF
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where O is a -zero-matrix of the corresgonding order and where the convention
A=A, A=A, holds for matrices; A; being the adjacency matrix for the
complement G, of the graph G,.

The following two theorems describe the relation between the spectrum
of NEPS or the Boolean function and the spectra of graphs on which operations
are made. For the Boolean function the relation is obtained only for the
case when G,, ..., G, are regular graphs.

Let graphs G,, ..., G, have respectively m,, ..., m, vertices and let
{)\,,j|1 =1,...,m}, ]—l , n be their spectra. Let the eigenvector w; corres-
pond to the elgenvalue 7\,,]

Theorem 5.3. NEPS with the basis B of graphs G,, ..., G,, having the spectra
{Ng |z =1,....m} (j=L1,...,n), has the spectrum {Ai, . i, |i;=1,..., m;
j=1,. n}, ‘where

(5.4) Aiyyoiy= Z iy Bie vy Br

This theorem is a direct consequence of Theorem 5.1 and the Lemma
from [13]. Some special cases of this theorem were quoted in [13] and have
been known in the matrix theory. Specially, for the sum of graphs we refer
to [75]. Note, that the spectrum of the p-sum is equal to the set of all values
of the elementary symmetric function of order p of variables Ay, ..., Au,.

We proceed to the determination of the spectrum of the Boolean func-
tion of graphs. We assume that A 1 =17 (j=1, ..., n), where r; are indices of
graphs G,, ..., G,. Eigenvalues of the matrix A are denoted by )\ﬂ We intro-

duce the conventlon Nl =2i; and Nl = 7\,1
According to Theorem 2.10 we have that for regular graphs relations

7\ y=m—1— , and 7\11 =—1—Ny (i = m) hold. The eigenvector w is
51multaneously the eigenvector for 7\,,] in the matrix A what is proved in [77].
Theorem 5.4. If G,, , G, are regular graphs the spectrum of the graph
G=f(G,, ..., G,) is the set {A ,,,,, wlh=1,...,my, j=1,...,n}, where
(5.5) A= 2, M Brle o 2Ry [P,

. BEF
The eigenvector u;,,... i, =1, ® *  + @ U, corresponds to the eigenvalue A;,, ... ;,.

This theorem is proved in [20].
5.3. Connectedness of NEPS and of Boolean functions

We shall investigate the connectedness of NEPS and of Boolean functions
by using Theorems 4.17 and 4.18.

Consider the NEPS of graphs G, ..., G, each containing at least one
edge. Indices r, ..., r, of graphs are then positive. By analysis of expression
. 4) we see that the index of NEPS is obtainable from (5.4) if we put i, =

=i=...=i],=1, i. e, according to the accepted convention, Ay=x,=r,
( j-—l . ). Thus for index r of NEPS we have
(56) r"‘Al’”" 2 rlﬁl . rnan (>0).

BEB

We shall consider only the NEPS with the basis B, for which there exists
in B for every j(j=1,...,n) at least one n-tuple (B;,...,f,) whith B;=1.
We will denote this condition by (D).
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If G,...,G, are connected graphs, positive eigenvectors x,,..., x,
belong to indices ry, ..., r,. It can be easily verified (see also [20]) that the
eigenvector x=x,& - - - ®x,, belongs to index r of NEPS. Thus, x is a positive
vector too.

According to Theorem 4.18, we then have that the number of compo-
nents of NEPS is equal to the multlphclty of index r. Hence, it is necessary
to 1nvest1gate whether or not A; .. is equal to r for some n-tuple
(s -5 Bn) different from (1, ..., 1). Thus, it is necessary for this that at least
for one Jj (j=1,...,n) the relation |Ni| =7y |=r; holds. Since G,, ..., G,
are connected graphs, its indices are one-fold e1genvalues and the above equa-
lity can be satisfied only if Ajjy = —1;. According to Theorem 4.3 we than have
that G, is a bipartite graph.

Hence, the possible unconnectedness of the NEPS of connected graphs, each
containing at least one edge, appears as a consequence of the bipartity of these
graphs. However, the bipartity does not always cause unconnectedness. The
structure of the considered NEPS has a certain influence too.

By further analysis we see that the requested n-tuple of indices i, ..., i,
must be such, that for every zﬂél the graph Gj is bipartite, i.e., that A=
—r,, and that every summand in (5.4) contains an even number of quantl-
ties Aji; (tj;él)

In order to formulate the theorem precising the conditions for connec-
tedness (and later also for bipartity) of NEPS we introduce the following
definition.

Definition 5.4. A function in several variables is called even (odd) with respect
to a given non-empty subset of variables if the function does not change its value
(it changes only its sign) when variables from the considered subset change simul-
taneously their sign. The function is even (odd) if at least one non-empty subset
of variables exists with respect to which the function is even (odd).

According to the above facts we get the following theorem.

Theorem 5.5. Let G,, ..., G, be connected graphs each containing at least one
- edge. Suppose also that G, ..., Gy ({iy,...,i}C({l,..., n}) are bipartite.
NEPS with the basis B, satisfying condition (D), of graphs G,, ..., G, is connected
graph if and only if the function

5.7 > xBie . x P
BeB
is even w.r.t. none of non-empty subsets of the set L={x; , ..., x; }. In the

case of unconnectedness the number of components is equal to the multiplicity of
the index of NEPS.

The idea of this theorem may be found in [15]. In [14] the following
theorem and a sketch of its proof is given. On the basis of Theorem 5.5 we
now give a complete proof.

Theorem 5.6. Let Gy, ..., G, be connected graphs each containing at least two
vertices. p-sum of these graphs is a connected graph if, and only if, one of the
Jfollowing conditions holds: 1° p is equal to n and at most one of the graphs is
bipartite; 2° p is odd and less than n; 3° p is even and less than n, where at
least one of the graphs G, ..., G, is not bipartite. If p is equal to n and exactly
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1(>1) of the graphs G,, ..., G, are bipartite, the p-sum has 2! components.
If p is even and less than n and if all the graphs G, ..., G, are bipartite,
p-sum has two components.

Proof. Consider the function (5.7). For the p-sum this is the elementary
symmetric function of order p of variables x,, ..., x,, i. €.,

(5.8) 2 Xey o Xaps

{ags. .oy op}
where the summation is made over all combinations {«, ..., oc} of the set
{1,...,n}. The number of elements of L (see Theorem 5.5) is equal to I

If p=n, (5.8) reduces to x,---x,. If />1 this function is even w.r.t.

some non-empty subsets of L. The number of components is greater than the
number of such subsets by 1. Thus, p-sum has 1+( ;)+(i)+ e =20
components.

Under condition 2° the evenness of (5.8) does not depend on /; the func-
tion is not even. In order to prove this fact, we assume, on the contrary,
that there exists a non-empty subset S of L w.r.t. which (5.8) is even.
If S exists, there exists also the term Xig » * + Xip from (5.8) containing an even
number of variables from S. Since p is odd this term contains at least one
variable not belonging to S. Let, for example, x,lES and x,I,eES Since p<n,
there exists at least one variable x; not contained in x; - - -x;,. W. 1. t. S the
terms x;;, ..., Xi,_,X; and x;x;, - - - x;, are not even, namely the first in case
x,&8 and the latter in case X GES In both cases we see that (5.8) cannot
be an even function under condmon 2°.

If condition 3° holds, we again assume that (5.8) is even w. r. t. to some
subset S of L and consider the term x;, - - xi, which contains 2k (k natural
number) elements from S. If 2k<p, we can prove in the same way as earlier
that (5.8) contains a term not even w.r.t. S. If, however, 2k=p, consider

the term x;x;, - - - x;,, where X; is not contained in Xx; - - - x;,. Since (5.8) is,
accordlng to the assumptlon, even, it must be x,ES. Hence, xl,. . x,,ES
and this is in contradiction with the fact that at least one of graphs G,,...,G,

is not bipartite (condition 3°).

Finally, if p is even and less than n and if /=n the function (5.8) is
even w. r. t. L. The multiplicity of the index of the p-sum is then equal to 2.

This completes the proof of the theorem.

This theorem represents an amalgamation and a generalization of some
particular results, as was pointed out in [14]. We add that the connectedness
of sum was investigated in [76], [1], [97]. Apart from the papers just adduced
and the ones in [14] the paper [73] deals also with connectedness of several
binary operations on graphs. In the quoted papers the connectedness was
investigated directly, by proving the existence of a path between two arbitrary
vertices of the considered graph.

We proceed to the investigation of the connectedness of the Boolean
function. We shall first prove a lemma.

Lemma 5.1. The arbitrary Boolean function G=f(G,, ..., G,) of regular graphs
Gy, ..., G, is a regular graph.
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Proof. According to (5.5) the index r of G is given by

(5.9) r=A, ..., = qulﬁd- Con, B =D B Ly (B,
BEF BEF

with convention rl =r,, r® =r,=m;—1—r,(j=1, ..., n). The eigenvector v=
=v,®...Qv,, where v, ..., v, are eigenvectors of indices r,, ..., r, of graphs
G,, ..., G,, corresponds to r. Since G,,..., G, are regular graphs, vectors
Vys .+ v, have all components equal to 1, and thus this property has also the
vector v. According to Theorem 4.16 we get the statement of the lemma.

We consider primarily the case when for all j=1, ..., n among n-tuples
of F at least one n-tuple exists for which 8,=1 and at least another n-tuple
for which B,=0. Denote this condition by (E). Then, there exist in (5.5) at
least one term containing 2;; and at least another term containing ;.

Consider the function

(5.10) Z xlﬁl . .xnﬁn.
BeF

In [20] the following theorem is proved:

Theorem 5.7. Let G,, ..., G, be regular connected graphs, each containing at
least one edge. Suppose also that neither of G,, ..., G, is complete. Apart from
that, let graphs G, ..., G, ({Ji» ---» Sy C{l, ..., n}) be bicomplete. The Boolean
function G=f(G,, ..., G,), satisfying condition (E), is a connected graph if, and
only if, the non-empty subset of variables x;,, ..., x;, with respect to which the
Sfunction (5.10) is even, does not exist.

The proof is based on an analysis of the expression (5.5), i. e., on deter-
mination of the multiplicity of the index (5.9).

ExampLE 5.1. For the disjunction of two graphs we have F={(1,0), (0, 1), (1, 1)}, and the
function (5.10) has the form x,+x,+x,x,. The function satisfies condition (E£) and is not
even. Therefore, disjunction of regular connected graphs, which are incomplete and which contain
each at least one edge, is a connected graph.

ExaMpPLE 5.2. Consider the negation of the exclusive disjunction. Here is F={(1, 1), (0, 0)}
and (5.10) becomes x,x,+ 1. This function is even w.r.t. {x,x,} and f(G,, G,) is an uncon-
nected graph if G, and G, are bicomplete. The following fact is of interest. The product of
bicomplete (in general, bipartite) graphs is an unconnected graph (see, for example, [35]).
f(G,, G)) contains all the edges of the product G, x G, and some others, but nevertheless it
remains an unconnected graph. Note that G, x G, is the corresponded NEPS to f(G,, G,).

We see in general that the connectedness of the NEPS corresponded to a
Boolean function depends on the evenness of the function (5.10) in the same
way as the connectedness of the Boolean function. So we have the following
theorem.

Theorem 5.8. Under conditions of Theorem 5.7 the Boolean function and to it
corresponded NEPS are either both connected or both unconnected graphs.

We shall now analyse the connectedness of the Boolean function in a
more general case.

Let the condition (E) still hold, but let some graphs G,,..., G, be
unconnected. However, as it is known, at least one of G; and G; is a connected
graph. Considerations similar to the preceding ones lead to the conclusion
that G, can affect the connectedness of the Boolean function only if one of the
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graphs G, and G, is bicomplete. If G; is unconnected it affects the connectedness
only if G, is bicomplete, i. ¢., if G, has two components with the same number
of vertices, each being a complete graph. It can easily be seen that in the
latter case, due to condition (E), the possible bipartity of G; has no influence.
(The sole case of this kind is when G; has, as components, two complete
graphs, each containing two vertices.)

Thus, if condition (F) holds, if each of regular graphs G,,...., G,
contains at least one edge and if none of them is a complete graph, then only
bicomplete graphs and graphs having two components with the same number
of vertices each of which is a complete graph, have an influence on the
connectedness of the Boolean function.

Now let the condition (£) not hold.

If for any j(j=1,...,n) (5.5) contains in all summands the quantity
Jjij» then unconnectedness of the graph G; directly causes the unconnectedness
of the Boolean function. G, affects the connectedness also then, when it is
bipartite (connected), but, naturally, in this case an additional condition exists.
Thus, the absence of the quantity 7\, in (5.5) causes that, for unconnectedness,
G; must not be bicomplete but only a connected b1part1te graph.

If all summands of the function (5.5) contain A;;, all foregoing remarks
are related to the complement Gj of G;. Hence, if in this case G, is not
V - prime, then G is unconnected and the Boolean function is an uncon-
nected graph too. The supplementary consideration involves the case when G,
(which is regular of degree r;, and has m; vertices) is y - prime and has the
following structure. The graph has two groups of vertices with the same number
of vertices. Every vertex is adjacent to each vertex of its group and to exactly

rj——'—;i-i-l vertices of the other group. Namely, in this and only in this case

the component 51 is a connected bipartite graph.

We see that the connectedness of the Boolean function depends also on
the evenness of a function, which we are going to define. This function is of
the form (5.10). Instead of over the set of n-tuples F, the summation is made
over the set H which is formed in the following way. In order to form H we
depart from F and transform its n-tuples by use of the following operations:

1° If for any j(j=1, ..., n) all n-tuples from F have on the j-th places
I's and the graph G; is connected and bipartite, these 1’s remain also in the
n-tuples of H. If the graph has not the mentioned property, these 1’s pass
into the 0’s.

2° If for any j(j =1,..., n) all n-tuples from F have on the j-th places
0’s and the complement G; of the graph G; is connected and bipartite, then

all mentioned 0’s pass into 1’s. If G; does not have the above property, zeros
remain on the j-th places in all n-tuples of H.

3° If for any j(j=1, ..., n) at least one n-tuple from F has 1 on the
J-th place and if at least one n-tuple has 0 on the same place, then: a) in the
corresponding n-tuples of H nothing is to be changed on the j-th places if G;
is a bicomplete graph; b) I’s pass into 0’s, and vice-versa, if G; has two
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components with the same number of vertices, each representing a complete
graph; c) in all n-tuples in the set H we put zeros if none of the preceding
two cases occurred.

According to the fereging we have the following theorem.

Theorem 5.9. Let G,, ..., G, be regular incomplete graphs each containing at
least an edge. The Bollean function f(G,, ..., G,) is a connected graph if and
only if the following conditions hold: 1° If for any j(j=1,...,n) all n-tuples
Jrom F contain 1’s on the j-th place, the graph G; is connected; 2° If for any
J(=1,...,n) all n-tuples from F contain 0’s on the j-th place, the graph G, is
V-prime; 3° The function Z xf1. .. x P is not even.

BcH

Note that all properties of G,, ..., G,, which affect the connectedness of
the Boolean function, can be determined by means of their spectra (see
3. and 4.).

5.4. Minimal functions

This Section is contained in paper [15]. We shall only give here some
remarks.

ReMARK 1. The problem of the minimal function, posed in [15] in relation to incomplete
p-sum of graphs, can also be analogously posed for incomplete extended p-sum of graph.

ReMARK 2. In a number of cases it was proved in [15], that no summand from the func-
tion (7) of [15] can be omitted without (7) becoming even. We note here that this is true
also for n=p—1.

REMARK 3. Theorem of [15] and the idea for its proving is due to R. P. Lucic.

5.5. Bipartity

In this Section we shall deduce the conditions under which the NEPS
of connected graphs is a bipartite graph.

All components of a NEPS of connected graphs have the same index r.
Thus, the number of components of such a NEPS is equal to the multiplicity
of its index. NEPS is bipartite if, naturally, all its components are bipartite.
According to Theorem 4.3. each component must then contain the number
—r in the spectrum. Since no component contains in the spectrum the number
—r with multiplicity greater than 1, it follows that a necessary and sufficient
condition for bipartity of NEPS is that the numbers r and —r have the same
multiplicity in the spectrum of NEPS,

We see from (5.4) that the number —r can exist in the spectrum of NEPS
only if some of graphs are bipartite and if there exist subsets of variables
Xy, «..» X, W. 1. t. which the function (5.7) is odd. According to the foregoing
facts we get the following theorem:

Theorem 5.10. Let G,, ..., G, be connected graphs, each containing at least one edge.
Suppose also that G;,, ..., Gi,({i;, ..., igC{l, ..., n}) are bipartite. NEPS with the
basis B, satisfying condition (D), of graphs G, ..., G, is bipartite if and only if the
number of non-empty subsets of the set L={x;,..., X}, w.r.t. which the
Sunction (5.7) is even, is smaller by 1 than the number of such subsets w.r. t.
which it is odd.
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This theorem represents the basis for proving the following theorem,
mentioned in [14], precising the conditions under which the p-sum is a bipartite
graph.

Theorem 5.11. Let G,. ..., G, be connected graphs each containing at least two
vertices. p-sum of these graphs is a bipartite graph if, and only if, one of the
following condition holds: 1° p is equa! to n and at least one of the graphs
Gy, ..., G, is bipartite; 2° p is odd and less than n and all the graphs
G, ..., G, are bipartite.

Proof. Let p=n. The function (5.7) i.e. (5.8) is then of the form

X+ -x,. If L= g (see Theorem 5.10), p-sum is not bipartite. Let L con-
tain I/(/=1) elements. Then the function x;---x, is even w.r.t. exactly

(;)+(i)+ .. - =2"1_1 non-empty subsets of L and is odd w.r.t. exactly
(i>+(;)+ .+« =271 quch subsets. According to Theorem 5.10, p-sum is then
bipartite.

Let p be odd and less than n The function (5.8) is then not even
(Theorem 5.6.) It is odd only w. r.t. all variables because if it were odd w. r. t.
a proper subset of variables, then one summand among the summands of
(5.8) would exist, containing an even number of variables from the same subset,
which is in contradiction with the assumption of oddity of (5.8). Thus, for the
bipartity of p-sum in this case it is necessary (and sufficient) that all the
graphs G, ..., G, are bipartite.

Finally, if p is even and less than », using similar reasoning, we see that
(5.8) cannot be odd.

This completes the proof of the Theorem.

5.6. The number of walks

As it was already said in [16], the results from [16] can be extended to
some operations on graphs for which adjacency matrices are expressed in terms
of normal summands. Considerations similar to that of [16] give the following
theorem;

Theorem 5.12. Let N =ZC,~,~1.7\,]§-]- (j=1, ..., n) denote the number of length k
Jor G;. NEPS with the bésis B of graphs G, ..., G, contains

Nk= Z C”x ° 'Cnin( Z )\11'161' ’ ')\"inan)k
i1, in BEB
walks of length k.

ExampLE 5.3. For some chessfigures, the graphs of their moving on the two or many-
-dimensional chessboards can be expressed in form of NEPS of graphs of its moving on one-
-dimensional boards. So it is mentioned in [1], that the graph of rook’s move on a two-
dimensional square board is equal to sum of graphs of rook’s move on a one-dimensional
board with itself, (This is mentioned in [1] for the case when the rook moves only for a
field in a move, but it is obviously that this holds in general case).

In [18] the king’s moving on a two-dimensional square board was considered. From
this consideration it follows that everything that has been said for the rook is valid also for
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the king, only the sum of graphs is to be interchanged with the strong product (NEPS with
the basis containing all possible n-tuples) of graphs.

If the rook moves only for a field, the corresponding graph of its moving on one
dimensional board is not different from the graph of king’s move on the same board. The
number of walks of length k¥ was determined in [18]. Then according to Theorem 5.12 we
have for the number of ways that a rook (if it moves along for a field) i. e. a king makes a
series of £ moves on s-dimensional chessboard of dimensions n, x .- x n,:

(5.11)
ie.

(5.12)

where

Ni= 2> Ci--Cig (hiy+ - =+ + hsig)F,
i1s cees is

s K} k
Ne= S (ncﬁ,-) (noﬁjm—l),
i j=1 j=1

i15 00es is
h=1,...,n (j=1,...,5),

2i—1 = 2i—1
cotg? Ajij=2 cos

Cjij= -,
Ilj+1 nj‘l'l 2 n,+1

7.

In [18] a special case of the result (5.12) was obtained. This is the case s=2, n,=n,=n,
which corresponds to king’s moving on the n xn board.

1.
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