PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU PUBLICATIONS DE LA FACULTÉ D'ÉLECTROTECHNIQUE DE L'UNIVERSITÉ À BELGRADE

SERIJA: MATEMATIKA I FIZIKA – SÉRIE: MATHÉMATIQUES ET PHYSIQUE

№ 338 - № 352 (1971)

345. THE SUBPOLAR FORM OF A LINEAR TRANSFORMATION*

A. R. Amir-Moéz, W. A. Donnell, C. R. Perry

For a singular linear transformation A on an *n*-dimensional unitary space, the unitary part of the polar decomposition is not unique [1, p. 169]. In this note we study a decomposition of A called the subpolar decomposition of Ain which the factors are unique.

1. Definitions and notations. We shall use the standard notations of linear algebra of a unitary space E_n . For a linear transformation A on E_n the adjoint A^* is defined by $(A\xi, \eta) = (\xi, A^*\eta)$. The generalized inverse of A will be denoted by A^- [3]. It is clear that $AA^- = P$ and $A^-A = Q$, where P is the Hermitian projection on the range of A and Q is the Hermitian projection on the range of A^* .

A linear transormation A on E_n is called subunitary if $A^- = A^*$. One can easily see that a subunitary transformation is the same as a partial isometry [1, p. 150].

2. Theorem. Let A be a subunitary transformation on E_n . Then:

i) Each proper value of A has absolute value less than or equal to one;

ii) Every non-zero proper value of A has absolute value one if only if A is normal;

iii) If ξ is a proper vector corresponding to the non-zero proper value m, then $||A^*\xi|| = ||\xi||$;

iv) Let $m_1 \neq m_2$ be two non-zero proper values of A with ξ_1 , ξ_2 the corresponding proper vectors. Then $(\xi_1, \xi_2) = (A^*\xi_1, A^*\xi_2)$.

The proof will be omitted.

3. Theorem. A necessary and sufficient condition for a linear transformation A on E_n to be subunitary is that A is a product of a unitary transformation and a Hermitian projection.

(The proof is omitted.)

- ._

^{*} Presetend December 25, 1970 by D. S. MITRINOVIĆ.

This theorem enables one to choose an orthonormal basis with respect to which the matrix of A has the form:

$$\begin{pmatrix} u_{11} \cdots u_{1n} \\ u_{k1} \cdots u_{kn} \\ 0 \cdots 0 \\ 0 \cdots 0 \end{pmatrix}$$

where k is the rank of A and the set $\{(n_{i_1}, \ldots, u_{i_n})\}$ is orthonormal. Similarly one can obtain a matrix of the form:

$$\begin{pmatrix} v_{11}\cdots v_{1k} & 0\cdots \\ \vdots & \cdots \\ v_{n1}\cdots v_{nk} & 0\cdots \end{pmatrix},$$

where $\{(v_{n1}, \ldots, v_{nj})\}$ is orthonormal.

4. Theorem. Let A be a linear transformation of rank k on E_n . Then there exist a unique subunitary transformation S with $S^-S = A^-A$, and a unique positive semidefinite transformation K of rank k such that A = SK. This form is called the subpolar form of A.

Proof. It is clear that we may put $S = A^{\overline{*}}\sqrt{A^{\overline{*}A}}$ and $K = \sqrt{A^{\overline{*}A}}$. This proves the existence of S and K.

Now suppose $A = S_1K_1 = S_2K_2$. This implies $K_1^2 = K_1S_1^-S_1K_1 = K_2S_2^-S_2K_2 = K_2^2$. Thus $K_1 = K_2 = \sqrt{A^*A}$. On the other hand we observe that $S_1S_1^- = S_2S_2^- = P$, where P is the Hermitian projection on the range of A. This with $S_1\sqrt{A^*A} = S_2\sqrt{A^*A}$ imlies the uniqueness of S.

5. Corollary. Let A satisfy the hypothesis of 4. Then A can be uniquely written as $A = \sqrt{AA^*}S$, where S is the same subunitary transformation of 4.

Proof. It is clear that $A = S\sqrt{A^*A}$ implies $A^* = \sqrt{A^*A}S^*$. Thus one may conclude that $\sqrt{AA^*} = S\sqrt{A^*A}S^*$ which implies $\sqrt{AA^*}S = S\sqrt{A^*A}$. This proves the corollary.

6. Theorem. Let A = SK be the subpolar form of A. Then A is normal if and only if SK = KS.

The proof is very simple and will be omitted.

7. Theorem (HESTENES [2]). Let A be a non-zero linear transformation on E_n . Let $m_1 > \cdots > m_h > 0$ be the distinct absolute singular values of A. Then A has a unique decomposition

$$A=m_1S_1+\cdot\cdot\cdot+m_hS_h,$$

where S_i , i = 1, ..., h are subunitary and $S_1 + \cdots + S_h = S$, the subunitary part of A. The proof is clear if one considers the diagonal form of $\sqrt{A^*A}$.

REFERENCES

1. P. R HALMOS: Finite-Dimensional Vector Spaces, 2nd ed. New York, 1958.

2. M. R. HESTENES: Relative Hermitian matrices. Pacific J. Math. 11 (1961), 225–245. 3. R. PENROSE: A generalize l inverse for matrices. Proc. Cambridge Philos. Soc 51

(1)55), 406-413.

Texas Tech University Lubbock, USA