PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU pUBLICATIONS DE LA FACULTÉ D’ÉLECTROTECHNIQUE DE L'UNIVERSITÉ A BELGRADE

SERIJA: MATEMATIKAIFIZIKA-SERIE: MATHEMATIQUESETPHYSIQUE
№ 338 - № 352 (1971)

345. THE SUBPOLAR FORM OF A LINEAR TRANSFORMATION*

A. R. Amir-Moéz, W. A. Donnell, C. R. Perry

For a singular linear transformation A on an n-dimensional unitary space, the unitary part of the polar decomposition is not unique [1, p. 169]. In this note we study a decomposition of A called the subpolar decomposition of A in which the factors are unique.

1. Definitions and notations. We shall use the standard notations of linear algebra of a unitary space E_{n}. For a linear trasformation A on E_{n} the adjoint A^{*} is defined by $(A \xi, \eta)=\left(\xi, A^{*} \eta\right)$. The generalized inverse of A will be denoted by A^{-}[3]. It is clear that $A A^{-}=P$ and $A^{-} A=Q$, where P is the Hermitian projection on the range of A and Q is the Hermitain projection on the range of A^{*}.
A linear transormation A on E_{n} is called subunitary if $A^{-}=A^{*}$. One can easily see that a subunitary transformation is the same as a partial isometry [1, p. 150].
2. Theorem. Let A be a subunitary transformation on E_{n}. Then:
i) Each proper value of A has absolute value less than or equal to one;
ii) Every non-zero proper value of A has absolute value one if only if A is normal;
iii) If ξ is a proper vector corresponding to the non-zero proper value m, then $\left|\left|A^{*} \xi\right|\right|=||\xi||$;
iv) Let $m_{1} \neq m_{2}$ be two non-zero proper values of A with ξ_{1}, ξ_{2} the corresponding proper vectors. Then $\left(\xi_{1}, \xi_{2}\right)=\left(A^{*} \xi_{1}, A^{*} \xi_{2}\right)$.

The proof will be omitted.
3. Theorem. A necessary and sufficient condition for a linear transformation A on E_{n} to be subunitary is that A is a product of a unitary transformation and a Hermitian projection.
(The proof is omitted.)

[^0]This theorem enables one to choose an orthonormal basis with respect to which the matrix of A has the form:

$$
\left(\begin{array}{ccc}
u_{11} & \cdots & u_{1 n} \\
u_{k 1} & \cdots & u_{k n} \\
0 & \cdots & 0 \\
0 & \cdots & 0
\end{array}\right)
$$

where k is the rank of A and the set $\left\{\left(n_{i 1}, \ldots, u_{i n}\right)\right\}$ is orthonormal. Similarly one can obtain a matrix of the form:

$$
\left(\begin{array}{cccccc}
v_{11} & \cdots & v_{1 k} & 0 & \cdots & 0 \\
\vdots & & \cdots & & \\
v_{n_{1}} & \cdots & v_{n k} & 0 & \cdots & 0
\end{array}\right)
$$

where $\left\{\left(v_{n 1}, \ldots, v_{n j}\right)\right\}$ is orthonormal.
4. Theorem. Let A be a linear transformation of rank k on E_{n}. Then there exist a unique subunitary transformation S with $S^{-} S=A^{-} A$, and a unique positive semidefinite transformation K of rank k such that $A=S K$. This form is called the subpolar form of A.

Proof. It is clear that we may put $S=A^{*} \sqrt{A^{*} A}$ and $K=\sqrt{A^{*} A}$. This proves the existence of S and K.

Now suppose $A=S_{1} K_{1}=S_{2} K_{2}$. This implies $K_{1}{ }^{2}=K_{1} S_{1}^{-} S_{1} K_{1}=K_{2} S_{2}^{-} S_{2} K_{2}=K_{2}^{2}$. Thus $K_{1}=K_{2}=\sqrt{A^{*} A}$. On the other hand we observe that $S_{1} S_{1}^{-}=S_{2} S_{2}^{-}=P$, where P is the Hermitian projection on the range of A. This with $S_{\mathrm{l}} \sqrt{A^{*} \vec{A}}=S_{2} \sqrt{A^{*} A}$ imlies the uniqueness of S.
5. Corollary. Let A satisfy the hypothesis of 4 . Then A can be uniquely written as $A=\sqrt{A A^{*}} S$, where S is the same subunitary transformation of 4 .

Proof. It is clear that $A=S \sqrt{A^{*} A}$ implies $A^{*}=\sqrt{A^{*} A} S^{*}$. Thus one may conclude that $\sqrt{A A^{*}}=S \sqrt{A^{*} A} S^{*}$ which implies $\sqrt{A A^{*}} S=S \sqrt{A^{*} A}$. This proves the corollery.
6. Theorem. Let $A=S K$ be the subpolar form of A. Then A is normal if and only if $S K=K S$.

The proof is very simple and will be omitted.
7. Theorem (Hestenes [2]). Let A be a non-zero linear transformation on E_{n}. Let $m_{1}>\cdots>m_{h}>0$ be the distinct absolute singular values of A. Then A has a unique decomposition

$$
A=m_{1} S_{1}+\cdots+m_{h} S_{h}
$$

where $S_{i}, i=1, \ldots, h$ are subunitary and $S_{1}+\cdots+S_{h}=S$, the subunitary part of A. The proof is clear if one considers the diagonal form of $\sqrt{A^{*} A}$.

REFERENCES

1. P. R Halmos: Finite-Dimensional Vector Spaces, 2nd ed. New York, 1958.
2. M. R. Hestenes: Relative Hermitian matrices. Pacific J. Math. 11 (1961), 225-245.
3. R. Penrose: A generalize.l inverse for matrices. Proc. Cambridge Philos. Soc. 51 (1)55), 406-413.

Texas Tech University
Lubbock, USA

[^0]: * Presetend December 25, 1970 by D. S. Mitrinović.

