342. GEOMETRIC INEQUALITIES AND THEIR GEOMETRY*

P. J. van Albada

1. Introduction. Recently a team of five authors ${ }^{1}$ published a collection of over 400 geometric inequalities, most of them dealing with triangles. The majority of the latter can be rewritten in the form $P(a, b, c)>0$ or $P(a, b, c) \geqq 0$ where $P(a, b, c)$ is a symmetric and homogeneous polynomial in the real variables a, b, c, representing the sides of a triangle. In GI a great number of discrete polynomials $P(a, b, c)$ is given. In this paper we determine the complete set of symmetric and homogeneous polynomials of order $n \leqq 3$ that give rise to a correct geometric inequality and give some partial results for $n=4$.
2. Preliminary remarks. If $P(a, b, c)>0$ or $P(a, b, c) \geqq 0$ is a geometric inequality and if P is symmetric and homogeneous we will call it an inequality polynomial or I.P. Many I.P.'s published in GI have the special property that they vanish identically for equilateral triangles. In such a case P will be called a special I.P. Now the symmetric and homogeneous polynomials of order n form a vector space V_{n} of finite dimension ${ }^{2}$. If P_{1} and P_{2} are I.P.'s then also $\lambda_{1} P_{1}+\lambda_{2} P_{2}$ is one when λ_{1} and λ_{2} are non-negative, not both zero. So these polynomials form a convex subset of V_{n} which is the inner part C_{n} of a semicone.

The polynomial

$$
P_{p q r}=a^{p} b^{q} c^{r}+a^{p} b^{r} c^{q}+a^{q} b^{p} c^{r}+a^{q} b^{r} c^{p}+a^{r} b^{p} c^{q}+a^{r} b^{q} c^{p}
$$

where $p \geqq q \geqq r$ is supposed, is a symmetric and homogeneous polynomial of order $n=p+q+r$. Any symmetric and homogeneous polynomial of order n can be written as a linear combination $\sum \lambda_{p q r} P_{p q r}$ of such polynomials. Each of these polynomials takes the value 6 in the point ($1,1,1$). So the special I.P's all lie in a hyperplane H_{n} with equation $\sum \lambda_{p q r}=0$. The set of special I.P.'s is a convex and semiconic subset C_{n}^{*} of this hyperplane; we have $C_{n}^{*}=C_{n} \cap H_{n}$.

[^0]We order the polynomials $P_{p q r}$ by writing their leading terms in alphabetic order. Then the polynomials $P_{p q r}^{\prime}$ obtained by subtracting its successor from each $P_{p q r}$ but the last one form a basis of H_{n}.

If $\varrho>0$ then $P(a, b, c)$ and $P(\varrho a, \varrho b, \varrho c)$ have equal signs because P is homogeneous. Therefore we need only to consider classes of similar triples. The classes of similar triples with positive elements form the inner part of the triangle $(1,0,0),(0,1,0),(0,0,1)$ in the projective plane. The coordinates a, b, c have to satisfy $a>b+c, b>c+a, c>a+b$. This reduces the part of the plane to be considered to the inner part of the triangle $(1,1,0),(0,1,1)$, ($1,0,1$).

Because P is symmetric, a permutation of a, b, c does not change its value. Hence without loss of generality we may assume $a \geqq b \geqq c$. This reduces the part of the plane to be considered to the inner part of the triangle $\Delta:(1,1,1),(1,1,0),(2,1,1)$. Occasionally we will choose $b=1, a=1+\alpha$, $c=1-\gamma$, and study the values of P on the euclidean triangle $T: \alpha, \gamma \geqq 0$, $\alpha+\gamma<1$. This will not lead to confusion because points of Δ are denoted with three and points of T with two coordinates.
3. I.P.'s of order 1. Here $X_{1}^{\prime}=\frac{1}{2} P_{100}=a+b+c=2 s$ is a basis of V_{1}. The I.P. semicone is the set $x_{1} X_{1}^{\prime}$ with $x_{1}>0$. The set of special I.P.'s of order 1 is empty.
4. I.P.'s of order 2. $P_{200}=2 a^{2}+2 b^{2}+2 c^{2}$ and $P_{110}=2 a b+2 b c+2 c a$ form : basis of V_{2}, while $P_{200}^{\prime}=Q=(a-b)^{2}+(b-c)^{2}+(c-a)^{2}$ is a basis of H_{2}. W write $X_{1}^{2}=P_{200}^{\prime}$.

Then the semicone of special I.P.'s is the set $x_{1} X_{1}^{2}$ with $x_{1}>0$. Anoth basis of V_{2} is given by X_{1}^{2} and

$$
X_{2}^{2}=\frac{1}{2}\left(P_{110}-P_{200}^{\prime}\right)=2 a b+2 b c+2 c a-a^{2}-b^{2}-c^{2}
$$

Here also X_{2}^{2} is an I.P. for $X_{2}^{2}=a^{2}-(b-c)^{2}+b^{2}-(c-a)^{2}+c^{2}-(a-b)^{2}>0$. the I.P. semicone contains the set $S: x_{1} X_{1}^{2}+x_{2} X_{2}^{2} ; x_{1} \geqq 0, x_{2} \geqq 0$; not $x_{1}=x_{2}=$ On the other hand, if $P=x_{1} X_{1}^{2}+x_{2} X_{2}^{2}$, then $P(1,1,0)=2 x_{1}$ and $P(1,1,1)=3$ so if P is an I.P. then both x_{1} and x_{2} are nonnegative.

So the I.P. semicone is exactly the set S.
5. I.P.'s of order 3. A basis for H_{3} is given by

$$
X_{1}^{3}=P_{300}^{\prime}-P_{210}^{\prime}=(a-b)^{2}(a+b-c)+(b-c)^{2}(b+c-a)+(c-a)^{2}(c+a-l
$$

and

$$
X_{2}^{3}=3 P_{210}^{\prime}-P_{300}^{\prime}=(a-b)^{2}(3 c-a-b)+(b-c)^{2}(3 a-b-c)+(c-a)^{2}(3 b-a
$$

Evidently, X_{1}^{3} is an I.P. Also X_{2}^{3} is one; we have

$$
\begin{aligned}
X_{2}^{3} & =(a-b)^{2}(3 c-a-b)+(b-c)^{2}(3 a-b-c)+\{(a-b)+(b-c)\}^{2}(3 b-a- \\
& =2(a-b)^{2}(b+c-a)+2(b-c)^{2}(a+b-c)+2(a-b)(b-c)(3 b-a-c)
\end{aligned}
$$

because

$$
3 b-a-c>(3 b-c)-(b+c)=2(b-c)
$$

Further, if $P=x_{1} X_{1}^{3}+x_{2} X_{2}^{3}$ then $P(2,1,1)=4 x_{1}$ and $P(1,1,0)=4 x_{2}$. So in an I.P. neither x_{1} nor x_{2} can be negative.

The semicone of special I.P.'s therefore is the set $x_{1} X_{1}^{3}+x_{2} X_{2}^{3}, x_{1} \geqq 0$, $x_{2} \geqq 0$, not $x_{1}=x_{2}=0$.

As for the other I.P.'s certainly $X_{3}^{3}=(a+b-c)(b+c-a)(c+a-b)$ is one. Consider the set

$$
\left\{P \mid P=x_{1} X_{1}^{3}+x_{2} X_{2}^{3}+x_{3} X_{3}^{3}\right\} .
$$

We have $P(2,1,1)=4 x_{1} ; P(1,1,0)=4 x_{2} ; P(1,1,1)=x_{3}$. So the I.P. semicone is the above set under the condition $x_{1}, x_{2}, x_{3} \geqq 0$, not $x_{1}=x_{2}=x_{3}=0$.
6. I.P.'s of order 4. $P_{400}, P_{310}, P_{220}, P_{211}$ form a basis of $V_{4} ; P_{400}^{\prime}, P_{310}^{\prime}, P_{220}^{\prime}$ form a basis of H_{4}. Another basis of the latter space is given by

$$
\begin{aligned}
X_{1}^{4} & =\frac{1}{2}\left(P_{400}^{\prime}-P_{310}^{\prime}-P_{220}^{\prime}\right) \\
& =\frac{1}{2}\left\{(a-b)^{2}\left(a^{2}+b^{2}-c^{2}\right)+(b-c)^{2}\left(b^{2}+c^{2}-a^{2}\right)+(c-a)^{2}\left(c^{2}+a^{2}-b^{2}\right)\right\} \\
& =a^{2}(a-b)^{2}+c^{2}(b-c)^{2}+(a-b)(b-c)\left(c^{2}+a^{2}-b^{2}\right), \\
X_{2}^{4}= & \left.\frac{1}{2}\left(P_{400}^{\prime}-5 P_{310}^{\prime}+3 P_{220}^{\prime}\right) \quad+(c-a)^{2}\left(c^{2}+a^{2}+3 b^{2}-4 a c\right)\right\} \\
& =\frac{1}{2}\left\{(a-b)^{2}\left(a^{2}+b^{2}+3 c^{2}-4 a b\right)+(b-c)^{2}\left(b^{2}+c^{2}+3 a^{2}-4 b c\right)\right. \\
& +\frac{1}{2}(a-b)^{2}\left\{(a-2 b)^{2}+(a-2 c)^{2}\right\}+\frac{1}{2}(b-c)^{2}\left\{(2 a-c)^{2}+(2 b-c)^{2}\right\} \\
& \quad+(a-b)(b-c)\left(c^{2}+a^{2}+3 b^{2}-4 a c\right) \\
X_{3}^{4} & =\frac{1}{2}\left(-P_{400}^{\prime}+3 P_{410}^{\prime}+P_{220}^{\prime}\right) \\
& \frac{1}{2}\left\{(a-b)^{2}\left(c^{2}-(a-b)^{2}\right)+(b-c)^{2}\left(a^{2}-(b-c)^{2}\right)+(c-a)^{2}\left(b^{2}-(c-a)^{2}\right)\right.
\end{aligned}
$$

Evidently X_{1}^{4} and X_{3}^{4} are I.P.'s. X_{2}^{4} is another one because

Now, let

$$
c^{2}+a^{2}+3 b^{2}-4 a c=(a-2 c)^{2}+3\left(b^{2}-c^{2}\right) .
$$

$$
P=x_{1} X_{1}^{4}+x_{2} X_{2}^{4}+x_{3} X_{3}^{4} .
$$

We have $P(2,1,1)=4 x_{1} ; P(1,1,0)=4 x_{2} ;$ so in an I.P. both x_{1} and x_{2}] to be nonnegative.

For x_{1}, x_{2} positive, x_{3} negative, $x_{1}-x_{2} \geqq 0$ we have

$$
\left(x_{1}+x_{2}-x_{3}\right) P(0, \gamma)=\left[\gamma^{2}\left(x_{1}+x_{2}-x_{3}\right)-\gamma\left(x_{1}-x_{2}\right)\right]^{2}+\gamma^{2}\left(4 x_{1} x_{2}-x_{3}^{2}\right) .
$$

Hence

$$
P\left(0, \frac{x_{1}-x_{2}}{x_{1}+x_{2}-x_{3}}\right)=\frac{\left(4 x_{1} x_{2}-x_{3}{ }^{2}\right)\left(x_{1}-x_{2}\right)^{2}}{\left(x_{1}+x_{2}-x_{3}\right)^{3}}
$$

and, since $0 \leqq \frac{x_{1}-x_{2}}{x_{1}+x_{2}-x_{3}}<1$, for an I.P. $x_{3}^{2} \leqq 4 x_{1} x_{2}$ is required.
For x_{1}, x_{2} positive, x_{3} negative, $x_{2}-x_{1} \geqq 0$, we have

$$
\left(x_{1}+x_{2}-x_{3}\right) P(\alpha, 0)=\left[\alpha^{2}\left(x_{1}+x_{2}-x_{3}\right)-\alpha\left(x_{2}-x_{1}\right)\right]^{2}+a^{2}\left(4 x_{1} x_{2}-x_{3}^{2}\right)
$$

Apparently also here P can be an I.P. but if $x_{3}^{2} \leqq 4 x_{1} x_{2}$.
Now consider the points in H_{4} for which $x_{3}{ }^{2}=4 x_{1} x_{2}, x_{3}<0$; i.e., consider the polynomials $P=t^{2} X_{1}+X_{2}-2 t X_{3}, t>0$. Then

$$
\begin{aligned}
\left(\alpha^{2}+\alpha \gamma+\gamma^{2}\right) P=\left[\left(\alpha^{2}+\alpha \gamma+\gamma^{2}\right)(t-1)\right. & \left.+\left(\alpha^{3}-\gamma^{3}\right)(t+1)+\left(\alpha^{2} \gamma-\alpha \gamma^{2}\right)(t+2)\right]^{2} \\
& +3 \alpha^{2} \gamma^{2}(\alpha+\gamma)^{2}(t+2)^{2} \geqq 0,
\end{aligned}
$$

with equality only for $a=0, \gamma=0$, for any t; for $\alpha=0, \gamma=\frac{t-1}{t+1}$ if $t>1$; for $\gamma=0, \alpha=\frac{t-1}{t+1}$ if $t<1.1^{1}$ So in H_{4} the semicone C_{4}^{*} of special I.P.'s is bounded by the cone $x_{3}{ }^{2}=4 x_{1} x_{2}$ and the tangent planes $x_{1}=0, x_{2}=0$.

In V_{4} we can take as a basis the set $\left\{X_{1}^{4}, X_{2}^{4}, X_{3}^{4}, X_{4}^{4}\right\}$ where

$$
X_{4}^{4}=F^{2}=s(s-a)(s-b)(s-c) .
$$

In an I.P. of the form $P=x_{1} X_{1}^{4}+x_{2} X_{2}^{4}+x_{3} X_{3}^{4}+x_{4} X_{4}^{4}$ we must have $x_{1} \geqq 0$, $x_{2} \geqq 0, x_{4} \geqq 0$, since $P(2,1,1)=4 x_{1} ; \quad P(1,1,0)=4 x_{2} ; \quad P(1,1,1)=\frac{3 x_{4}}{16}$. For fixed $x_{1}, x_{2}, x_{3}>0$ we have to find the minimal value of x_{3} for which P is still nonnegative definite on Δ or T. In that case there is a point Q of $\bar{\Delta}$ for which P vanishes. If this point is an inner point we must have

$$
\sum x_{i} \frac{\partial X_{i}}{\partial a}=\sum x_{i} \frac{\partial X_{i}}{\partial b}=\sum x_{i} \frac{\partial X_{i}}{\partial c}=0 .
$$

We obtain 3 homogeneous linear equations in $x_{1}, x_{2}, x_{3}, x_{4}$ which are independent because in an inner point of Δ we have $a \neq b \neq c \neq a$.

We will not carry out this computation here but we give the result in the form of the following

Theorem. If $\Delta_{0}=\left(a_{0}, b_{0}, c_{0}\right)$ is any triangle, then the polynomial

$$
\begin{aligned}
\varphi(a, b, c) & =2\left(a_{0}^{2}+b_{0}^{2}+c_{0}^{2}\right)\left(a_{0}+b_{0}+c_{0}\right)^{2}(a b+b c+c a)^{2} \\
& +\left(a_{0} b_{0}+b_{0} c_{0}+c_{0} a_{0}\right)\left(a_{0}+b_{0}+c_{0}\right)^{2}\left(a^{2}+b^{2}+c^{2}\right)^{2} \\
& -\left(a_{0}^{2}+b_{0}^{2}+c_{0}^{2}\right)\left(a_{0} b_{0}+b_{0} c_{0}+c_{0} a_{0}\right)(a+b+c)^{4}
\end{aligned}
$$

[^1]is an I.P. vanishing for all points inside Δ lying on the conic
$$
\left(a_{0}^{2}+b_{0}^{2}+c_{0}^{2}\right)(a b+b c+c a)=\left(a_{0} b_{0}+b_{0} c_{0}+c_{0} a_{0}\right)\left(a^{2}+b^{2}+c^{2}\right) .
$$

It passes through Δ_{0}.
Proof. Without loss of generality we may assume $a+b+c=a_{0}+b_{0}+c_{0}$.
Let $a_{0}^{2}+b_{0}^{2}+c_{0}^{2}=u, a_{0} b_{0}+b_{0} c_{0}+c_{0} a_{0}=v, a b+b c+c a=v+w$, then

$$
a^{2}+b^{2}+c^{2}=u-2 w .
$$

We have

$$
\begin{aligned}
\varphi & =\left(a_{0}+b_{0}+c_{0}\right)^{2}\left\{2 u(v+w)^{2}+v(u-2 w)^{2}-u v(u+2 v)\right\} \\
& =2\left(a_{0}+b_{0}+c_{0}\right)^{4} w^{2} \geqq 0 .
\end{aligned}
$$

If in φ we determine the coefficients $x_{1}, x_{2}, x_{3}, x_{4}$ we obtain

$$
x_{1}=(5 u-6 v)^{2}, x_{2}=(u-2 v)^{2}, x_{3}=(u-2 v)(14 u-12 v), x_{4}=48(u-v)^{2} .
$$

Indeed $x_{1} \geqq 0, x_{2} \geqq 0, x_{4} \geqq 0, x_{3}<0$ since $v \leqq u<2 v$.
Since the two proportions $x_{1}: x_{2}: x_{4}$ depend on one parameter u / v only the I.P.'s of this type exist for special triples $\left(x_{1}, x_{2}, x_{4}\right)$ only. Indeed we have

$$
\begin{aligned}
& 48 u v=-18 x_{1}+66 x_{2}+8 x_{4} ; 48 v^{2}=-12 x_{1}+60 x_{2}+5 x_{4} ; \\
& 48 u^{2}=-24 x_{1}+72 x_{2}+12 x_{4} ;
\end{aligned}
$$

so x_{1}, x_{2}, x_{4} must satisfy the quadratic relation

$$
\left(-18 x_{1}+66 x_{2}+8 x_{4}\right)^{2}=\left(-24 x_{1}+72 x_{2}+12 x_{4}\right)\left(-12 x_{1}+60 x_{2}+5 x_{4}\right),
$$

or

$$
9 x_{1}^{2}-18 x_{1} x_{2}+9 x_{2}^{2}-6 x_{1} x_{4}-6 x_{2} x_{4}+x_{4}^{2}=0 .
$$

In the space spanned by $X_{1}^{4}, X_{2}^{4}, X_{4}^{4}$ this represents a cone inscribed in the trihedral angle bounded by $x_{1}=0, x_{2}=0, x_{4}=0$.

For all other vectors $\left(x_{1}, x_{2}, x_{4}\right)$ the corresponding I.P. vanishes in a boundary point of $\bar{\Delta}$ which represents an isosceles triangle with vertical angle $<\frac{\pi}{3}$ (if on the segment between $(1,1,0)$ and $(1,1,1)$); an isosceles triangle with vertical angle $>\frac{\pi}{3}$ (if on the segment between $(1,1,1)$ and $(2,1,1)$); or a degenerate triangle (if on the segment between $(2,1,1)$ and $(1,1,0)$).

[^2]
[^0]: * Presented October 1, 1970 by O. Воттема.
 ${ }^{1}$ O. Bottema, R. Ż. Đordević, R. R. Janić, D. S. Mitrinović, P. M. Vasić: Geometric Inequalities. Groningen 1969. It will be denoted GI in this paper.
 ${ }^{2}$ For $n=6 k$ this dimension is $3 k^{2}+3 k+1$, for $n=6 k+i$ it is $(k+1)(3 k+i)$; $i=1,2,3,4,5$.

[^1]: ${ }^{1}$ So for all positive t the semidefinite form vanishes for the class of equilateral triangles and in addition to that for exactly one class of similar isosceles triangles; conversely, for each class of similar isosceles triangles it is possible to construct a special I.P. that vanishes just for that class.

[^2]: Technische Hogeschool
 Eindhoven, Holland

