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340. INEQUALITIES FOR R, r AND s*
QOene Bottema

1. Introduction. In this paper R and r stand for the radii of the circumcircle
and the inscribed circle of a triangle ABC and s for its semi-perimeter. By
various methods a set of inequalities between R, r and s have been derived
from EULER’s time to recent years. The most important contribution to the
subject seems to us a paper of BLUNDON!, who has drawn attention to an
inequality (known for many years) which we should like to call absolute or
Sfundamental: it is not only valid for every triangle, but inversely, if it is satis-
fied by R, r and s there exists a triangle with these data. In other words, it
is not only a necessary but also a sufficient condition. This means that it is
the best condition available; it can not be improved and, in principle, all other
inequalities for R, r and s are consequences of this one. Moreover BLUNDON
has given an illustrative geometric interpretation by mapping the classes of simi-
lar triangles on the points of a set S in the Euclidean plane; he determines the
boundary of § by mesns of two irrational functions and makes use of the
image to prove several inequalities, and in particular the strongest linear inequa-
lities and the second order ones of a certain type.

For the sake of completeness we derive in 2 the fundamental inequality.
In 3 we introduce a geometric mapping slightly different from BLUNDON’s and
we prove that the boundary of S is (a part of) a well-known curve: STEINER’S
hypocycloid, sometimes called deltoid. In 4 we verify some known lineir ine-
qualities by means of the geometric interpretation. 5 deals with quadratic
inequalities; we mention in particular a proof of that given by NAKAIIMA, to
which another inequality is added which improves it. In 6 some higher order
inequalities are considered; it contains a proof of an inequality of the fourth
order conjectured by BAGER. ;

2. The fundamental inequality. If a, b, ¢ are the sides of the triangle we intro-
duce the expressions u; = —a+b+c, u,=a—b+c, us=a+b—c. The necessary and
sufficient conditions for the existence of the triangle are: ;>0 (IHI 2, 3).
Indeed, as 2a=u,-+u,, 2b=u,+u;, 2c=u,+u,, the sides are positive numbers
and the triangle inequalities are obviously satisfied.

* Presented December 5, 1970 by D. S. MITRINOVIC.

1 'W. J. BLUNDON: Inequalities associated with the triangle. Canad. Math. Bul. 8 (1965),
615—626; see also R. W. FrRuUcHT: Estudio sistematico de desigualdades de segundo grado para
los raz{'ros de las circunferencias circunscrita e mscrtta de un triangulo. Scientia Ne 136 (1969)
114—127
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28 O. Bottema

We shall express the elementary symmetric functions of u; in terms of
R, r and s. If F is the area of the triangle we have F=rs, 4 FR=abc,
8 F2=suju,u,.

Therefore ,
2.1 w+u, +u;=2s,
2.2 u Uy = 8ris.
Furthermore we have
(2.3) Uyly + Uy g + thytty = D, {@2—(b—c)2} = 4 D, be—4 s,

On the other hand, from the formulas
2.4) ro+ryt+r.—r=4R, rr,=(s—b)(s—c), etc.,
where r,, 1y, r, are the radii of the escribed circles, we derive
(2.5) r(4R+r)= 2, (s—b)(s—c)= 2 bc—s2.
Therefore in view of 2.3 and 2.5
2.6) Uy +usuy +u,=4r (4R +r).
Hence the cubic equation with the roots u; reads
2.7 w—2su2+4r (4R +r)u—8sr2=0,

(2.7) is of course well-knownz2.

If R, r and s are three (positive) numbers the triangle exists if and only
if (2.7) has three positive roots. But obviously, in view of the signs of its coef-
fcients the equation has neither negative roots nor a zero root. Therefore: the
necessary and sufficient condition for the existence of the triangle is: (2.7) has
real 100ts.

By the substitution u=2v+~§-s equation (2.7) is transformed into

(2.8) vi+pr+qg=0,

where

(2.9) p=—;—(12Rr+ 3r2—s2), q=%s(18Rr—9r2—s2).
The equstion (2.8) has real roots if and only if

(2.10) 4p3+27q2<0.

Hence the condition asked for is

(2.11) (12Rr+3r2—s2)3+52 (18 Rr—9r2—s2)2<0,

The terms s6 and Rrs+ vanish, the left-hand side has the factor 27r2 and we
have: the fundamental inequality for R, r, s is

{2.12) I=(r2+592+12Rr3—20Rrs2 + 48 R2r2—4R252 + 64 R3r< 0.

2 See f.i. A. LAISANT: Géométrie du triangle. Paris 1896, p. 112.
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As I is a quadratic function of s2, its zero’s can be. found as irrational
functions of R and r. This gives rise to inequalities of the type f; (R, r)=s2<f, (R, r)
given by BLUNDON.

3. A geometric interpretation. In order to investigate the set of triples R, r, s
satisfying (2.12) we remark that 7 is, of course, homogeneous polynomial and
hence only the ratios of R, r and s are of interest. Therefore we introduce the
variables x and y defined by

3.0 Rx=r, Ry=s,
and we obtain

3.2) k=(02+y22+12x3—20xy2+48x2—4y2+ 64x < 0.

We make use of a geometric interpretation by considering x, y as the Cartesian
coordinates of a point in the Euclidean plane U. Then values x, y which satisfy
(3.2) correspond to the points of a certain region G in I, lying in the first
quadrant x>0, y>0 and bordered by the curve K with the equation k=0.
This equation learns us already some preliminary properties of K. I is a
quartic curve. As K has no real intersections with the line / at infinity (in fact
K is tangent to / in the isotropic points of U) it lies in a finite part of -the
plane. Furthermore K passes through the origin O, and, as only even powers
of y appear OX is an axis of symmetry. We could obtain more information
K by determlnlng possible double-points or by making use of the fact that
k=0is a quadratic equation for y2.

We prefer however to study K by another approach. If in (2.10) equality
holds equation (2.7) has two equal roots which implies that the triangle has
two equal sides. Hence the points of K (in the first quadrant) are the images
of isosceles triangles. If in ABC we have AC=BC=a and / BAC =g, then

AB=c=2acosq, hy=asin ¢, F=a?sin ¢ cos¢, s=a (1l +cosy),
r=asin ¢ cos p/(1+cosp), R=a/2sing
and therefore
3.3) x=2cosp(l—cosg), y=2sing (1+cose)

and we have arrived at a representation of K by means of parameter @. The
complete curve is mapped on [0=<@<<2x], for the part which interests us we

have 0<p<<m/2. By the substitution tg%<p=t we get
(3.9 x=412(1—2) (1 +2)2, y=8t(1 +12)2

and the conclusion: K is a rational curve of the fourth order. Such a curve
has always three double points. It is easy to verify that dx/dt=dy/dt=0 is

satisfied by t1=—;—\/§, tzs—% v/3 and t,= . Hence K has three cusps:

AI(L, i\/i), Az(%, _%\/3), A, (—4, 0).

2 2



30 O. Bottema

Moreover we have A2A3=A3A1=A,A2=3\/§ which means that the cusps are

the vertices of an equilateral triangle. K is now recognized as a well-known

curve; it is STEINER’s hypocycloid or deltoid.
K is drawn in fig. 1. It

passes through O and through

D (0, 2). Its center is M (—1, 0),

the three cuspidal tangents pass

through it. The radii of the cir-

cumscribed and the inscribed [y

circle are 3 and 1 respectively.

As M satisfies (3.2) all points

inside K satisfy (3.2). For our

problem only points in the first

quadrant are of interest. The ,

conclusion is: the set of points
with x>0, y>0 satisfying the
fundamental inequality are those
of the region G, bordered by the
arcs A0 and AD of K and
by the straight line OD.

The points on OD do not A
belong to G (they correspond to 2
degenerated triangles) but the
other points on the boundary
do. 4, is the image of the equi-
lateral triangle; for points on Fig. 1
OA, we have O<@=m/3 or

0<t§%\/§, they correspond to isosceles triangles with a vertex angle y =m/3;

for points on A,D yields %é(p<ﬂ/2 or %\/§§t<1, they are the images of

isosceles triangles with y <m/3. It is important that K is inside the rectilinear
triangle OA4,D and that the arcs OA, and A4,D are convex.

The region containing the points of G with the exception of A4, will be
denoted by G'.

4. Linear inequalities. The inequality (2.12) is the absolutely strongest one for
R, r and s; equality holds only for isosceles triangles. All other inequalities are
weaker, but they may be more elegant or more simple being of a degree less
than four. Many of them are inserted in a collection recently publisheds. We
remark that inequalities in which the sides a, b, ¢ or the angles a, f, ¢ appear
symmetrically (which holds in the majority of the cases) may be expressed as
inequalities for R, r and s, in view of the fact that the elementary symmetric
functions of a, b, ¢ are given by

a+b+c=2s, bct+catab=s2+(4R+r)r, abc=4Rrs.

We deal first with some linear inequalities.

3 0. Bortema, R. Z. Porpevié, R. R. JaNIG, D. S. MiTriNovié, P. M. Vasié: Geo-
metric Inequalities. Groningen 1969, further on to be quoted as GI
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The line x=% passes through A4, but all other points of G are to its

left. Therefore xé% or

A

(4.1) r<—R,

1
2 .
which is EULER’s inequality (GI, 5.1). Furthermore y=%\/§ passes through

A, but G’ is below this line. Hence yé%\/g or

4.2) sg%\/ER,

which is again well-known (GI, 5.3). It is clear that any line through 4, which
does not intersect the triangle OA,D gives rise to a linear inequality. As an
example we mention an inequality of JANIC (GI, 5.33)

(4.3) s\/3=5R—,

which is obvious as G’ is below the line x-+ y1/3—5=0. Another example is
the inequality s\/3=(rs+r,+7r), proved by GERRETSEN and by others (GI
5.29; 7.2), which is equivalent to

4.4 s\/3<4R+r

(which improves (4.2) in view of (4.1)) and follows from the fact that G’ is

below the line x—y+/3+4=0. It is easy to derive from our geometric inter-
pretation the strongest possible linear inequalities: they express that G’ is above

the line 04, and below the line DA,. They are therefore y=3+/3x, or
(4.5) 5=3+/3r,

which is well-known (GI, 5.11) and secondly y<(3 \/5—4)x+2, which implies
BLUNDON’s inequality (GI, 5.4)

(4.6) SS2R+(3y/3—dr.

5. Quadratic inequalities. We consider now some quadratic inequalities for R,
r and s. In our geometric interpretation they mean that the region G’ is inside
or outside a certain comic. In the literature minima for s2 in terms of R and
r are well-known. They are of the general type s2=4;r24+21,rR+A;R2 or
y2z A x2+22,x+A;. Equality holds for a conic of which OX is an axis of
symmetry. If it passes through 4, and O we have ;=0 and 44,=27—4,.

We consider the function
G.1) fix, y)=llx2-y2+%(27—ll) x.

If we substitute the points of K given by (3.4) and put 2=z, then keeping in
mind that f must have the factors z and (3z—1)?, we obtain

(5.2) f@=2z(1+24@Bz—1)2{(4—3)z—(4, +5)}.
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For the points of K in the first quadrant we have 0<z<l. From (5.2) it
follows that f(z)<0 if and only if 4,+5=0. Therefore we have proved the
set of inequalities

(5.3) S22 +%(27—/11) rR, A= —5.

The strongest inequality of the set is that for- A= —5:
5.4 $2=(16R—5r)r,

which has been derived by STEINIG (GI, 5.8; 5.17) and recognized by BLUNDON
as the best one. From R=2r it follows that all others are weaker. The
case 4, =3:

(5.5) s2z3r(4R+r)

was already proved a century ago (GI, 5.5; 5.6); 4,=0 gives the elegant
inequality (GI, 5.12)

(5.6) szgzler.

(5.4), (5.5) and (5.6) express that G’ is respectively outside a certain eilipse,
hyperbola and parabola. We shall now try to derive maxima for s2, that is
formulas of the type s2=p,r2+2u,rR+ py R2,

If the corresponding conic y2=p, x2+2u,x+u; passes through 4, and D
we have y;=4 and p,+4u,=11 and we meet the function

1
(5.7 g% y)=mx2—yr+—(11—p) x +4.
If we substitute (3.4) g(z) must have the factors 1—z and (3z—1)2. We obtain

(5.8 g@)=2(1+2)*4(1—2)B3z—12{(1—u)z+2}

and therefore g(z)=0 for 0<z<1 if and only if u;=<3. And as moreover
g(x,»)=0 for x=0, 0<y<<2 we have derived the following set of inequalities

(5.9) s2§‘ulr2_|.%(11__lul) rR+ 4Rz, u =<3,

the strongest one being that with u,=3:
(5.10) 2<3r2+4rR+4R2,

proved by STEINIG (GI 5.8) and shown by BLUNDON (GI, 5.9) to be the best
one of the type considered.
The inequality of NakasmmMA (GI, 7.3) reads

(.11 szg4R2+%.\/‘3‘rs,

which means that 4 (xy) =% V3xy—y2+4=0 for all points of G. The curve

h(x, y)=0 is a hyperbola H passing through 4, and D; the inequality means
that the arc of H between D and A4, is above the arc of K between these

.



Inequalites for R, r and s 33

points, (the other branch of H lies below the asymptote OX, O being the
center of H). Substituting (3.4) into A(x, y) we obtain

(5.12) h(t)=4 (1 +12)~ {% V383 (1 —12)—1602+(1 + t2)4} .

As H passes through the double point A4, (t=%\/§) of K, through D(t=1)
and the symmetric point D' (¢t=—1) of D with respect to O, h(¢t) has the
factors (1—1t2) and (t—%\/g)z and we have

(5.13) h(t)=4(1+t2)"4(1—t2)(%\/§—t)2(3+6\/§t—6t2——§v\/§t3—t4),
which must be discussed for %\/Sg t< 1. As the last factor may be written as
(1—t4)+%\/§t(l—tl)+6t(1—t)+(5%\/§—4)t+2(1—t),

all terms of which are positive for 0<<#<C1, we have indeed A (t)=0 and the-
refore (5.11) has been proved. We try to approximate the arc 4,D of K by
another hyperbola J (with center O), passing trough A, and D and it seems
attractive to choose J in such a way that it is tangent to K at D (which the
hyperbola H is not). This tangent is y=x+2. The conditions give us the
equation of J:

(5.14) Je 1) =(11—6+/3)x2+2xy—y2+4=0,
which is indeed that of a hyperbola. Substituting (3.4) into j(x, y) we obtain
(5.15) j(t)=4(1+t2)‘4{4(11——6\/§)t4(1—t2)2+16t3(1—t2)—16t2+(1+t2)4}.
As J passes through the double point A4, (t=—;—\/§)

through D(t=1) and D’(t=—1), j(t) must have the A
factors (t——%\/—?;)z, (1—1t)2 and (1 +¢); we obtain

j

(5.16) j(®)=12(1 + )41 —s)2 (t—%\ﬁ)z /0

x{1+(1 +g\/§) t+(—1+2+/3)12+(15—8~/3)13}

and therefore
j(@®)=0, 0<t<l,

with equality only for téé\/g. Hence we have proved the 3 7
inequality

'(5.17) S2<4R2+2rs+(11—6+/3) r2,

which seems to be new. It is stronger than NAKAJIMA's:

the difference of the right hand side of (5.11) and that Fig. 2

3 Publikacije
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of (5.17) is %(11 \/3—18)r(s—3+/3r), which is =0 in view of (4.5). The
arc 4D of J is between that of K and H.

6. Higher order inequalities. These may be treated in the same way; the method
comes to this that we have to determine the position of region G with respect
to a certain curve of higher order in the image plane. We give two examples.

In his paper on trigonometric inequalities BAGER* has stated the
inequality

6.1) Zcosﬂcosyg%\/gn cota
as a conjecture. If we translate it by means of
(62)  2.cosfcosy=(r2+s2—4R)/4R2, []cota={s2—(Q2R+nr2}2rs

it reads

(6.3) rs (r2 +s2—4R2)—% V3R {s2—QR 112} =0,
or
(6.4) I(x, y)Exy(x2+y2—4)+%\/§ (x2—32 +4x+4) 20,

which is an inequality of the fourth order. The quartic curve L, with equation
/=0, passes through D and 4,. A further discussion shows that the points of

L which lie in the strip nggé are those of three arcs, the arc b from

D to A,, a second one ebove b (with OY as an asymptdte) and a third below
OX. Hence we must show that the arc D4 of K is below b. Substltutlng 3.4
into [ (x, ) we obtain ‘

(6.5) L=xy(x24+y>—4) =271+ 7 3(1 —2)2 (—3¢4+ 12£2—1)
and ’ _
6.6) . L=x2—y2+4x+4=4(1+12)~4(1—12)3 (t4—612+1).

Keeping in mind that L passes through the double point Ale(t=i—;—\'/§) of K

we get after some algebra -

6.7) 1(t)= 6(1+t2)—7(1—tz)z(t—-3—\'/§)2; o
><(3\/3t8+6t7—6\/3zﬁ——78t5—92\/3t4+98t3+54\/§t2+54t+9\/3)

The last factor may be written as

(6.8)  3\/318+617+6+/3(1—=19)+7813 (1—12) +54~/312(1—12)

4 +54t(l—t3)—|—20t3(1—t)+2(37—19\/§)t4;l—3\/§,4

from which' it follows that it is pesitive: for 0<¢<I. Henee [(1)z0 for
0=r=<1 and the conjecture (6 ]) has been proved It s a strong 1nequa11ty

4 A. BAGER: 4 famtly ‘of gomometrzc mequdltttes Same Pubhcatlons, pp 5--25. -
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for it can be shown that the arc b is below the straight line DA,. Therefore
although L remains outside G’ it penetrates the rectilinear triangle ODA,.

We consider another inequality, which is a counterpart of (6.1). Similar
to (6.2) we have

(69 [T a=",
2 s
and, as a consequence of (5.10), the known inequality

(6.10) I1 tg%azncota,

. . . 9 3
which is a reason to compare zcosﬂ cosy with :\/3 1T tg%a.

We shall prove BAGER’s inequalitys

6.11) %\/3 I tg—;a—z cosficosy=0,
that is the cubic inequality
(6.12) 9+/3R2r—s(r2+52—4R2) =0
or
(6.13) m(xy)=9+/3x—(x2+y2—4)y=0.

y

A L
o
(4] x
\—/D'
Fig. 3

Just for a change we do it graphically. The curve M given by m(xy)=0 is
symmetric with respect to O, it is a circular curve, its only real asymptote
is OX, y is positive for large values of x, M passes through A; (the tangent

at A4, has the positive slope 1%\/3, which is less than of DA)), through D

(the tangent here has the slope %\/3 which is greater than that of DA,),

5 A. BAGER: A family of goniometric inequalities. Same Publications, pp. 5—25.
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through O (where it has an inflexion point, the tangent being y = —-% \/ix)

and through D’. The third intersection of M and DA, is outside DA,. From ali
this we can easily make a scetch of M (fig. 3). The region G’ is below M and
(6.13) follows. It is remarkable in so far that M passes through the three
vertices of G; equality holds for the equilateral and for both isesceles dege-
nerated triangles. On the other hand it is not a very strong inequality, for M
does not even enter the rectilinear triangle ODA,.

7. A final remark. Some known inequalities hold for acute (or for obtuse)
triangles only. It is well-known that a triangle is acute, right-angled or obtuse
if s—r—2R is negative, zero or positive respectively. In the image plane U
the equation y—x—2=0 represents the straight line »# through D and the

point E(r/2—1, \/2+1) on the arc 04, of K, corresponding to
t=+/2—1= tg%

and being the image of the rectangular isosceles triangle. The line n divides
the region G in the subregion G,, bordered by OD, n and the arc OE, and
the subregion G,, bordered by n and the arcs DA; and EA,. Points of G,(G,)
correspond to obtuse (acute) triangles, as BLUNDON remarked already. The
mapping might be used to prove inequalities which hold for acute (or obtuse)
triangles (fig. 2).
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