333. ON SOME GENERALIZATIO NS OF THE PEXIDER EQUATIONS*

Karol Baron

Let $A_{1}, \ldots, A_{k}, k \geqq 2$, be any sets; let G_{1} with the operation $*$ be an semigroup with the neutral element e, and let G_{2} with the operation \circ be an Abelian group. Let us assume that there are k functions $\Phi_{1}, \ldots, \Phi_{k}$:

$$
\begin{equation*}
\Phi_{i}: A_{i} \xrightarrow{\text { onto }} G_{1}, \quad i=1, \ldots, k, \tag{1}
\end{equation*}
$$

and let us consider the functional equation
(2) $\quad f\left[\Phi_{1}\left(x_{1}\right) * \cdots * \Phi_{k}\left(x_{k}\right)\right]=g_{1}\left(x_{1}\right) \circ \cdots \circ g_{k}\left(x_{k}\right), \quad x_{i} \in A_{i}, i=1, \ldots, k$, where the functions

$$
\begin{aligned}
& f: G_{1} \rightarrow G_{2}, \\
& g_{i}: A_{i} \rightarrow G_{2}, \quad i=1, \ldots, k,
\end{aligned}
$$

are unknown.
Theorem 1. If the functions f, g_{1}, \ldots, g_{k} satisfy equation (2), then there exist constants $a_{1}, \ldots, a_{k} \in G_{2}$ and a function $\varphi: G_{1} \rightarrow G_{2}$ satisfying the equation

$$
\begin{equation*}
\varphi(x * y)=\varphi(x) \circ \varphi(y) \tag{3}
\end{equation*}
$$

such that

$$
\begin{equation*}
f(x)=a_{1} \circ \cdots \circ a_{k} \circ \varphi(x), \quad x \in G_{1}, \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
g_{i}\left(x_{i}\right)=a_{i} \circ \varphi\left[\Phi_{i}\left(x_{i}\right)\right], \quad x_{i} \in A_{i}, i=1, \ldots, k . \tag{5}
\end{equation*}
$$

Conversely, if the functions f, g_{1}, \ldots, g_{k} are defined by (4) and (5), where a_{1}, \ldots, a_{k} belong to G_{2} and the function $\varphi: G_{1} \rightarrow G_{2}$ satisfies equation (3), then f, g_{1}, \ldots, g_{k} satisfy equation (2).

Proof. It follows from (1) that for any $1 \leqq i \leqq k$ there exists an $x_{i}^{0} \in A_{i}$ such that

$$
\begin{equation*}
\Phi_{i}\left(x_{i}^{0}\right)=e . \tag{6}
\end{equation*}
$$

Let

$$
\begin{equation*}
a_{i}=g_{i}\left(x_{i}^{0}\right), \quad i=1, \ldots, k . \tag{7}
\end{equation*}
$$

[^0]Putting in (2)

$$
x_{1}=x_{1}^{0}, \ldots, x_{i-1}=x_{i-1}^{0}, x_{i+1}=x_{i+1}^{0}, \ldots, x_{k}=x_{k}^{0}, \quad i=1, \ldots, k,
$$

and taking to consideration (6) and (7) we can see that

$$
\begin{equation*}
g_{i}\left(x_{i}\right)=a_{1}^{-1} \circ \cdots \circ a_{i-1}^{-1} \circ a_{i+1}^{-1} \circ \cdots \circ a_{k}^{-1} \circ f\left[\Phi_{i}\left(x_{i}\right)\right], \quad i=1, \ldots, k \tag{8}
\end{equation*}
$$

Inserting expressions (8) into equation (2) and writing

$$
\begin{equation*}
b=a_{1}^{-1} \circ \cdots \circ a_{k}^{-1} \tag{9}
\end{equation*}
$$

we obtain the following equation

$$
f\left[\Phi_{1}\left(x_{1}\right) * \cdots * \Phi_{k}\left(x_{k}\right)\right]=\underbrace{b \circ \cdots \circ}_{(k-1) \text { times }} b \circ f\left[\Phi_{1}\left(x_{1}\right)\right] \circ \cdots \circ f\left[\Phi_{k}\left(x_{k}\right)\right] .
$$

After introducing the following symbols

$$
\begin{gather*}
y_{i}=\Phi_{i}\left(x_{i}\right), \quad x_{i} \in A_{i}, \quad i=1, \ldots, k \tag{10}\\
\varphi(x)=b \circ f(x), \quad x \in G_{1} \tag{11}
\end{gather*}
$$

the last equation takes the form

$$
\begin{equation*}
\varphi\left(y_{1} * \cdots * y_{k}\right)=\varphi\left(y_{1}\right) \circ \cdots \circ \varphi\left(y_{k}\right) \tag{12}
\end{equation*}
$$

Putting $x_{i}=x_{i}^{0}, i=1, \ldots, k$ in equation (2) and using relations (6) and (7) we obtain

$$
f(e)=a_{1} \circ \cdots \circ a_{k}
$$

whence it follows in view of (9) and (11) that $\varphi(e)$ is the neutral element of the group \boldsymbol{G}_{2}. Putting

$$
y_{1}=x, y_{2}=y, y_{j}=e \text { for } j=3, \ldots, k
$$

into equation (12) we obtain equation (3). Relation (4) results from (11) and (9), and from (8) and (4) we have (5).

Applying the principle of the mathematical induction we confirm that the function $\varphi: G_{1} \rightarrow G_{2}$ which satisfies equation (3), satisfies equation (12) as well, and hence the functions f, g_{1}, \ldots, g_{k} which are defined by expressions (4) and (5), where $a_{1}, \ldots, a_{k} \in G_{2}$ and the function $\varphi: G_{1} \rightarrow G_{2}$ is a solution of equation (3), satisfy equation (2).

In some particular cases we may omit the assumption that the set G_{2} with the operation \circ is a group. Let us namely consider the equation

$$
\begin{gather*}
f\left[\Phi_{1}\left(x_{1}\right) * \cdots * \Phi_{k}\left(x_{k}\right)\right]=g_{1}\left(x_{1}\right) \cdot \cdots g_{k}\left(x_{k}\right) \tag{13}\\
x_{i} \in A_{i}, i=1, \ldots, k
\end{gather*}
$$

where $\Phi_{i}, i=1, \ldots, k$ are given functions satisfying (1), and

$$
\begin{aligned}
& f: G_{1} \rightarrow R, \\
& g_{i}: A_{i} \rightarrow R, \quad i=1, \ldots, k,
\end{aligned}
$$

are unknown functions.

Theorem 2. The solutions of equation (13) have the form

$$
\begin{cases}f(x)=\prod_{i=1}^{k} a_{i} \cdot \varphi(x), & x \in G_{1}, \tag{I}\\ g_{i}\left(x_{i}\right)=a_{i} \cdot \varphi\left[\Phi_{i}\left(x_{i}\right)\right], & x_{i} \in A_{i}, i=1, \ldots, k\end{cases}
$$

or
(II) $\left\{\begin{array}{l}f(x) \equiv 0, \\ g_{j}\left(x_{j}\right) \equiv 0, \\ g_{1}, \ldots, g_{j-1}, g_{j+1}, \ldots, g_{k}-\text { arbitrary },\end{array}\right.$
where $\varphi: G_{1} \rightarrow R$ is a solution of the equation

$$
\varphi(x * y)=\varphi(x) \cdot \varphi(y),
$$

and $a_{i}, i=1, \ldots, k$, are real constants different from zero.

Proof. Making the same substitutions as in the proof of theorem 1 we obtain

$$
\begin{equation*}
f\left[\Phi_{i}\left(x_{i}\right)\right]=\prod_{\substack{i=1 \\ j \neq i}}^{k} a_{j} \cdot g_{i}\left(x_{i}\right), \quad i=1, \ldots, k \tag{14}
\end{equation*}
$$

Now let us consider two cases.
1° Each a_{i} for $i=1, \ldots, k$ is different from zero. We repeat now the argument from the proof of theorem 1 and we obtain system (I) as the solution of equation (13).
2° At least one of the $a_{i}(i=1, \ldots, k)$ is equal to zero. Hence and from (14) we draw the conclusion that the function f is identically equal to zero, i.e. the solution of equation (13) is given by system (II).

In the particular case, where $k=2, A_{1} \subset R^{n}, A_{2} \subset R^{m}$ and $G_{1}=G_{2}$ is the additive group of real numbers, equation (2) was considered by l. Kotlarski in paper [2]. The method of the proof of theorem 1 is similar to the method which is employed in the paper [2].

Remark. Taking $k=2$ and $A_{1}=A_{2}=G_{1}=R$, and assuming that the functions Φ_{1} and Φ_{2} are identities in R, and G_{2} is the additive g oup of real numbers and that operation $*$ is either the addition or the multiplication of numbers, we obtain from (2) and (13) the following equations

$$
f(x+y)=g_{1}(x)+g_{2}(y),
$$

(2')

$$
\begin{aligned}
f(x \cdot y) & =g_{1}(x)+g_{2}(y) \\
f(x+y) & =g_{1}(x) \cdot g_{2}(y) \\
f(x \cdot y) & =g_{1}(x) \cdot g_{2}(y)
\end{aligned}
$$

which are called the Pexider equations (see [1], p. 116).

REFERENCES

1. J. Aczec: Vorlesungen über Funktionalgleichungen und ihre Anwendungen. Stuttgart 1961.
2. I. Kotlarski: On some generalization of the Pexider equation. Aequationes Math. (to appear)

Silesian University
Katowice, Poland

[^0]: * Presented May 11, 1970 by D. S. Mitrinović.

