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332. THE INEQUALITIES OF RADO AND POPOVICIU.

P. S. Bullen

This note is a brief survey of certain inequalities of Rado and Popo-
viciu type, with an attempt at a unified treatment using convex functions.

This note is a brief survey of several recent generalizations of the inequa-
lities of RADO and POPOVICIU(inequalities (I7) and (19) below). Besides being a
survey this note attempts to give these results a unified treatment by the use of
convex functions. No claim is made for originality as all of these results have
appeared elsewhere in the references given in the bibliography.

Inequalities that can be shown to be special cases of some relatively simple
general inequality do not thereby lose their own importance or interest. A
very obvious classical case is that the much more important and useful HOL-
DER inequality is a special case of the simpler and more elegant inequality of
YOUNG.

Unification by the use of convex functions is not of course the only one
possible. Several other methods have been used to get these results. Elementary
calculus is one - as in section 3 below. Another is to show that that the
given inequality can be written in a form that exhibits it as a special case of
a simpler known inequality. In [2] both these methode; occur, giving alternative
proofs of the same result. A completely different method has been devised by
MITRINOVIC and VASIC. Unlike the other methods mentioned, this method is
creative in that it allows for the discovery as well as the proof of new ine-
qualities; it is given an elegant exposition in [18].

o. Functions in this note will always be real valued functions of a real vari-
able. If / is a function, (0) = {Oi' a2, . . .} a sequence of real numbers then /(0)
will denote the sequence {f(al), /(02)' . ..}. If (w) is a sequence of positive

n

numbers write Wn = L Wk'

k=l

----
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The following notations are standard.

Ir] (
In r

)

I/r
M n (a; w) = - L ak Wk ,

Wn k~1

(
n

)

!/h'n

= n akWk = Gn (a; w),
k~1

r#O, Irl<+oo,

r=O.

=max(a!, .., , an),

= min(a!, ... , an),

r=+oo,

r= - 00,

An (a; w)=M~I](a; w).

More generally if F is any strictly monotonic function,

~n(a; w) =F (~ i F-I(ak) Wk)'Wn k~1

(1)

By choosing F (x) = xl/r, or eX these general means reduce to those defined
above.

If I is any set of positive integers then define WI = L Wk and
kEf

~I(a; W)=F (~ L F-I(ak)Wk )'WI kEf

If WI = . . . = Wn these means will be written M~](a), etc.; if there is no
ambiguity a and, or W wiIl be omitted. It should be remarked that the choice
of F in (1) often places a restriction on (a); thus if F(x)=xl/r or eX, (a) must
be taken as a sequence of positive numbers. When a particular F is chosen
this restriction will be stated, otherwise it is always implied that the sequence
must be such that F, and F-I, are defined wherever they occur.

We need certain properties of continuous convex functions; in particular
n

if f is such a function and L bk= 1, bk~O, k= 1,
'"

, n, then
k=1

fC~, akbk)::£
kt

bkf(ak)'

and if f is strictly convex inequality (2) is strict unless a1= . . . = an. The
main properties of such functions can be found in [1, 15, 18]; if a continuous
function f is both convex and concave it is linear.

(2)

1. The relationship between various means of type (1) can easily be given using
the properties of convex functions, [15, Theorem 92].

Theorem 1. If F, G are two strictly monotonic continuous functions, G increa:>-
ing and G-I 0 F convex then

(3) ~n(a;w)::£~n(a;w).

If G-1oF is strictly convex inequality (3) is strict unless a1= . . . =an. If either
G is decreasing or G-loF is concave inequality (3) is reversed.
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Proof. This is an immediate consequence of (2).

Remarks. (i) Particular cases of (3) give

-oo~r<s~ + 00,

for any positive sequence (a), with equality if and only if al = . . . =an.
(ii) If r = 0, s = 1 WI= . . . = Wn then inequality (4) is the famous arithmetic-geometric

mean inequality,
(5)

(Hi) By simple algebraic manipulations (4) can be generalized to allow the two means
to have different weights, [4,5, 19].

(iv) Inequality (3) is equivalent to

(6)

But, as the proof of Theorem 1 shows, (6) does not require G to be increasing.
1 s-r

(v) Using remark (iv) choose F(x)=x'/r, G-I(x)=-- then if x8/r~_,
1+x8 s+r

G-I OF is strictly convex and (6) implies that

s~r>O,

(7) ~ ~-> Wn-
1 + a S- 1 + (M Ir}(a. W»

8 ,

k=l k n'
s-r

provided aks~---, l~k~n. If instead F(x)=e'" then (7) can be extended to the case r=O.
s+r

This inequality is a generalization of one due to HENRICI, [8, 23].

2. Inequality (5) can be rewritten An-Gn~O, and in this form RADO obtained
a better lower bound proving, [14, Theorem 60]

An-Gn~~ max ("';a~-"';aj)2.
n l;;i;j, k;;i;n

POPOVICIU,[25], proved that if (5) is written An/Gn~ 1 then the lower bound
can be improved to give

(8)

(9)

Both RADO'S inequality and POPOVICIU'S inequality and the many gene-
ralizations due to BULLEN, MITRINOVIC, VASIC and others, [2, 3, 4. 5, 7, 8,
19, 20, 22, 23, 24, 25] can be deduced from a very simple but general obser-
vation due to EVERITT, [12].

Theorem 2. Let (a) be a given sequence, H, F two continuous functions such
that HoFis convex and define

a(H, F, w; I) = a (I) = W1H(fYI(a; w»).
Then if In J=0

(10) aU U J) ~ a(I) +a(J).

Further if HoF is strictly convex inequality (10) is strict unless

H (fYI (a; w»)=H(fYAa; w»).
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Proof. Using (2) this is an immediate consequence of the convexity of HoF .
Corollary 3. Let (a) be a given sequence, (p), (q) given positive sequences,
F, G, H, K four continuous functions such that HoF is convex, and KoG is
concave and define

(J(I)=a(H, F,p; l)-a(K, G, q; l).

Then if In J=0

(11) (J(IU J);;;,{J(I) + (J(J).

If H 0 F is strictly convex and K 0 G strictly concave then inequality (11) is
strict unless (i) H(fjr(a; p)) =H(fJAa; p)) and (ii) K(@r(a; q)) =K(@h(a; q)).
If H 0 F is strictly convex and K 0 G linear equality occurs in (11) only when (i)
holds; and if H of is linear and K oG strictly concave equality occurs in (11)
only when (ii) holds.

Proof. This is an immediate consequence of Theorem 2.

Remarks. (i) Theorem 2 and Corollary 3 say that a, fJ are subadditive set functions on the
positive integers.

(ii) The most important cases of inequality (11) occur when

I={1,2,..., n-l}; J={n}; IUJ={1,2,..., n}.

Corollary 4. Under the assumptions in Corollary 3

(12) PnH(fjn(a; p))-QnK(@n(a; q))

;;;,Pn-1H(fjn-l (a; p))- Qn-1K(@n-l(a; q)) + PnH(an)-qnK(an).

Remarks. (i) The cases of equality in CorolJary 4 are easiJy stated.
(ii) If (p) = (q) = (w), H = K then the last two terms on the right hand side of (12)

cancel to give

(13)

(iii) Because of the symmetry and simplicity of (13) compared to (12), it is of some
interest to modify Corollary 4.

Theorem 5. Under the assumptions of Corollary 3 if ft, 'I' are any two real
numbers

(14) Qn {HoF(;tAn(F-l(a); p) + ft )-KoG (An (G-1 (a); q) + 'II)}

;;;,Qn-l {HoF(;t' An-l (F-1(a); p) + ft' )-KoG(An-l (G-1(a); q) + 'II')},
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If HoF is strictly convex and KoG strictly concave inequality (14) is strict unless

(ii) an=G(An-l(G-1(a);q)+v'). If HoF is strictly convexandKoG linear

then inequality (14) is strict unless (i) holds; if HoF is linear and KoG strictly
concave then inequality (14) is strict unless (ii) holds.

Proof. Since K oG is concave,

QnKoG(An(G-l(a); q) +v) = QnK oG((An-l (G-1(a); q) +v') QQ~t + G-1 (an)
~)

~ Qn-lKoG(An-l (G-1(a); q) +v') + qnK(an).

Since H 0 F is convex,

QnHoF(;'An(F-l (a); p) + f1)

= QnHoF((;" An-l (F-l (a);p)) + f1') QQ:t +
~:

F-loH-loK(an))

Inequality (14) is now immediate, as are the cases of equality.

Let us consider some particular cases of these results.
1

(a) If x>O "and H(x)=xt, F(x)=x', rt*O, then HoF is convex provided

~;;2; I, (strictly convex unless ~ = I). Then Theorem 2 implies that for positivet t
sequences (a)

(15)

is subadditive, a re&ult due to EVERITT,and McLAUGHLINand METCALF,[12, 17].
If we take F(x) = eX then this result can be extended to the case r = 0.

1 1
- -(b) If x>O and F(x)=x', G(x)=xs, H(x)=xt, K(x)=xu, rt*O, su*O, then

if ~;£ 1 HoF is convex, and if ~~ I KoG is concave. Then Corollary 3
t u

implies that for positive sequences (a)

is subadditive; by taking F(x) or G(x) or eX this can be extended to allow
r = 0, or s = 0, [3, 4, 5].
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I I

If x>O, H(x)=K(x)=logx, F(x)=xr, G(x)=xs then HoF is strictly
convex if r > 0, K 0 G strictly concave if s < O. Then Corollary 3 implies
that for (a) a positive sequence

(Mlr] (a' p)Yr
1'(1)=

1
'

(Mf](a; q»Qr

is logarithmically subadditive; again, taking F(x) or G(x) to be eX will extend
this result to r = 0, s = 0, [3].

I I
- -(c) If x>O, F(x)=xr, G(x)=xs, H(x) = xt, rst*O; then provided ~;;;:; 1,

t

HoF is convex (strictly if r*t) and if ~ ~ 1, HoG is concave (strictly if s*t).
t

Hence if (a) is a positive sequence inequality (13) gives

(16) Wn((M~S](a; w»)f--(M~](a; w»)f}~ Wn-I((M~~I(a; w»)f-(M~~I(a; w»)f}.

The cases of equality can easily be deduced from Theorem 2. If we take
F(x)=ex then inequality (16) can be extended to the case r=O. [3,5,7,20].
If s = t = 1, r = 0, WI= . . . = Wn then inequality (16) reduces to RADo's ine-
quality

(17)

with equality if and only if an = Gn-I' Repeated application of inequality (17)
leads to (8); an interesting variation of (8), with an upper bound is given by
KOBER, and DIANANDA,[10, 16].

I I
- -(d) If x>O, F(x)=xr, G(x)=xs, H(x)=logx, r<O<s then HoF is strictly

concave and HoG strictly convex. So if (a) is a positive sequence inequality (13)
implies

M Is]( . ) w M Is] ( .
»)

W

( n a,w) "~ (~
a,w "-I,

M~](a; w) M~~I (a; w)

with equality if and only if an = M~s~I (a; w) = M ~~I (a; w). If instead we take
F(x) or G(x) or eX, inequality (18) can be extended to the cases r= 0, s= O.

If s=l, r=O, Wl='" =Wn then inequality (18) reduces to POPOVICru's
inequality

(18)

(19)

with equality if and only if an = An-I' Repeated application of (19) leads to
inequality (9); this last inequality also has a KOBER-DIANANDAvariant, [3].

(e) If F(x)=x, H(x)=G-1(x)=~-, a chosen so that H is strictly convex
1+a (x)

then (13) leads to a RADO extension of HENRICI's inequality
n W n-I W

k~ll+:k(ak) l+a(An~a; W»~ k~1 l+:k(ak)-l+a(An"--I'(a; w»'
with equality only if an = An-l (a; w); various simple choices of a are po;sible
as we have seen in inequality (7), [8, 231
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(f) Starting from inequality (14) it is possible to obtain extensions of these
inequalities, allowing different weights in the various means. Thus the following
are two possible extensions of RADO's inequality (17), [8];

PnQn PnQn-1

Pn (An (a; p)-(Gn(a; q)tnPn) ~Pn-1 (An-1 (a; p)-(Gn-i (a; q)qnPn-l)

PnQn-1

with equality only when an = Gn(a; q)qnPn-l;

with equality only when an = Gn-1 (a; q). These follow from (14) by taking ft =')1 = 0,
H(x)=K(x)=x and F(x)=eX, G(x)=x for the first, F(x)=-x, G(x)=-ex
for the second.

(g) Finally, by considering non-zero values of the parameters ft, and 'JI, in (14),
inequalities of the MITRINOVIC-VASIC type can be obtained, [20]. Thus (14)
leads to the following, that generalises (e) above.

Pn

(20) Qn
{

qnPn
An(a; p)-aGn(a; q) } ~ Qn-1 {

qnPn~~An-1(a; p)-aPn-1 Gn-1(a; q) }PnQn PnQn-1

Pn

for a>O, and with equality only when an = aPn-1 Gn-1(a; q). This follows from
(14) by taking H(x)=K(x)=x, F(x)=-x, G(x)=-eX, ft=O, a=eV,

Before leaving this section it should be noted that certain inequalities
between sums lead to inequalities between means that are not deducible in
this way from properties of convex functions: several such inequalities are due to
MITRINOVICand VASIC, [5,17,19]. The following result is perhaps the simplest
and most general; it is due to MITRINOVICand VASIC, [24].

Theorem 6. If A, ft>O, A+p,~ I, (a), (b), (p), (q) positive sequences, II' 12,
J1, J2 non-empty sets of integers with 11n J1= 12n J2 = 0, then

(21)

P
.:I Q '" (M [']( )).:1'(M [S]

(b '
) '"s, P

.:I Q '" (M [']( )).:1'(M [S]( )'"S~ /1 /2 /1 a; P /2' q T JI J2 JI a; P J2 b; q) .
If A+ft>l, (21) is strict; if A+p,= 1, (21) is strict unless

Proof. This is an immediate consequence of the inequality

and the conditions under which it is strict, [13, p. 29],
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Remarks. (i) Many particular Cases of this inequality are given in [17, 24]. In particu]ar the
subadditivity of the function It defined in (15) can be obtained from (21); see [24], where a
more general result is given.

s r
(ii) If rs<O, (a)=(b), choosing A.=--, It = -- 1= {I,... , n-l},J = {n}, then (21)

s-r s-r
gives the following result of MITRINOVIC and VASIC, [5, 19, 22].

3. A simple direct proof of RADO's inequality, (17); can be given as follows.
Let an = x and put

n-I I
n-l x nf(x) =An-Gn =-An-, +--Gn-I

n n
nX.

Then
n-I

that is to say, f has a single minimum at x = Gn-I . In other words unless
an= Gn-l'

Remark. This method of proof has been used to obtain many of the inequalities in the
previous section, [2, 19, 20, 21, 23].

Rewriting inequality (17) as An-Gn
>

n-!, the above argument shows
An-t-Gn-1 n

that the left-hand side has an attained lower bound, independent of (a).
Further if (a) is restricted to the class of non-constant monotonic sequences
this lower bound cannot be attained, and it is natural to ask if it can be
improved for such sequences.

The following theorem generalising one due to CAKALOVanswers this ques-
tion, [6, 9].

Theorem 7. If n>2, (a) a positive sequence such that, an>max(al"'" an-d
then

(22)

Wn /(Wn-Wj)
where An = inf - , with equality only when al = . . . = an. Further

I$i:;:=;n-I Wn2(Wn-t-Wj)

if An is replaced by a A:>An there is a sequence (a) for which inequality (22) fails
to hold.
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and as 8 decreases to zero ~ decreases to An for an appropriate choice of j.
an-I

This proves the last part of the above statement.
Suppose now that an-p+l = . . . = an = x, al;:;;;a2;:;;; . . . ;:;;;an-p < x and write

gr(x)=g(x)= W/ (Wn-l-Wl) (An (a; w)-Gn(a; w)

-Wn-/(Wn-Wl) (An-l (a; W)-Gn-l (a; w)

simple calculations show that if <P(t)= g' (x), where

then

<P'(t)= Wn Wn-ltWn-l-l ((Wn-Wl)(Wn-l-Wn-p)tWn_(Wn-l-Wl)(Wn-Wn-p)),

and so if 0 < t < I, <P'(t);:;;;0; since <P(I) = 0 this implies that if x ~ an-p,
g' (x) > O. This clearly implies inequality (22) for any increasing sequence (a);
since An' An-l' Gn, Gn-l are symmetric in al,..., an-l the result follows,
and the cases are equality are immediate.

Remarks. (i) Since An>
Wn-I

inequality (22), is stronger than (16) with s= 1, r=O.
Wn

(ii) It is not possible to improve inequality (19) in a similar manner. The result in
[6] that purports to give such an improvement is false as was pointed out by DIANANDA. In

. . K . n-1
fact If al =... =an-2= 1, an-I =an=a. Then hm (An/Gn)/(An-I/Gn-I) n=O If Kn>--.In

U-)-+OO n
n-1

other words the exponent - in (19) cannot be improved by assuming that an~max(al,..., an-I).
n

(iii) Also, these inequalities cannot be extended to means with different weights, [6].

4. In [13] EVERITT raised a very interesting question connected with RADO'S
inequality; inequality (17) implies that limn(An-Gn) exists; what distinguishes the

n---+oo

sequences for which this limit is finite? EVERITTdivided the problem into four cases;
(a) (a) is unbounded, ({3) (a) is bounded but does not converge, (y) (a) con-
verges to zero, (b) (a) converges to a finite, non-zero limit. In cases (a), ({3),
lim n(An-Gn) = 00; in case (y) limn(An-Gn)< 00 if and only if 2: an con-

n--+oo n--+oo n E N
verges; in case (c5) lim n(An-Gn)< 00 if and only if (a) is a strictly positive

n---+oo

sequence such that for some finite positive a, 2: (an-a)2> 00. EVERITT'S ori-
nEN

ginal proof of case (b) contained a flaw. This was pointed out in a review by
DIANANDA,[11], who later gave a correct proof [14]. The interesting part of
the proof in [12], is that it makes essential use of the sub-additivity of the
function f.l defined in (b) following Theorem 5 with (p) = (q), r = 0, s = t = u = 1.
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5. The two basic inequalities that have given their name to inequalities of a
similar type are inequalities (I7) and (I9). In recent literature, in particular in
the standard work [18], these have been called RADO's inequality and Popo-
VICIU'S inequality respectively.

Inequality (I7) appeared apparently for the first time in 1934 in the clas-
sical work of HARDY, LITTLEWOODand P6LYA, [15, Theorem 61] - where a
proof entirely different to any given in this note is indicated. Since in this
book the inequality is attributed to R. RADO the name has become standard.
Various proofs have been given since then; besides those in the various papers
mentioned in the bibliography the reader is referred to the excellent small
book [26] of D. S. MITRINOVICand P. M. VASIC, in particular to the papers
mentioned on pages 31-32 and 34.

For the second inequality the situation is less standard. Certain authors,
as for instance P. S. BULLEN[7] called this inequality POPOVICIU'S inequality,
since its proof was given in 1960 by T. POPOVICIU [25]. In book [18] this
inequality is also called POPOVICIU'sinequality. It seems, however, that this
inequality was first proved in 1932 by F. SIMONART[27]. After this the ine-
quality in question was rediscovered a number of times. Consult also the book
[26] by D. S. MITRINOVICand P. M. VASIC, particularly pp. 32-34.
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