PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU publications de la faculte d'electrotechnique de l'universite a belgrade

SERIJA: MATEMATIKAIFIZIKA- SERIE: MATHEMATIQUES ETPHYSIQUE № 330 - No 337 (1970)

NOTES ON INEQUALITIES INVOLVING TRIANGLES OR TETRAHEDRONS

Murray S. Klamkin

Note I
TRIANGLE INEQUALITIES

Four inequalities of Oppenheim involving elements of two triangles are extended to elements of \boldsymbol{n} triangles.

In this note, we give extensions to four triangle inequalities of OpPENHeim which appeared in Problem 5092 (Amer. Math. Monthly, 71 (1964), 444-445). Our derivation is similar to the published solution (loc. cit.) by Nolan.

Suppose that $A_{i}, B_{i}, C_{i}(i=0,1, \ldots, n-1)$ are n triangles with sides a_{i}, b_{i}, c_{i}, area Δ_{i}, and altitudes p_{i}, q_{i}, r_{i}. If a_{n}, b_{n}, c_{n} are defined by the equations

$$
a_{n}^{2}=\sum_{0}^{n-1} a_{i}^{2}, \quad b_{n}^{2}=\sum_{0}^{n-1} b_{i}^{2}, \quad c_{n}^{2}=\sum_{0}^{n-1} c_{i}^{2},
$$

then we will show that
(i) a_{n}, b_{n}, c_{n} are the sides of a triangle,
(ii) $p_{n}{ }^{2} \geqq \sum_{0}^{n-1} p_{i}{ }^{2}, \quad q_{n}{ }^{2} \geqq \sum_{0}^{n-1} q_{i}{ }^{2}, \quad r_{n}{ }^{2} \geqq \sum_{0}^{n-1} r_{i}{ }^{2}$,
equality occurring in all three if and only if the original n triangles are sımilar,
(iii) $\Delta_{n} \geqq \sum_{0}^{n-1} \Delta_{l}$, with equality if and only if the original n triangles are similar,
(iv) $\Delta_{n}^{n} \geqq n^{n} \prod_{0}^{n-1} \Delta_{i}$, with equality if and only if the original n triangles are congruent.

* Presented June 30, 1970 by R. R. Janić.
(i) follows immediately from the Minkowski inequality

$$
\begin{aligned}
\left(x_{1}^{m}+x_{2}{ }^{m}+\cdots\right. & \left.+x_{n}^{m}\right)^{1 / m}+\left(y_{1}^{m}+y_{2}{ }^{m}+\cdots+y_{n}^{m}\right)^{1 / m} \\
& \geqq\left\{\left(x_{1}+y_{1}\right)^{m}+\left(x_{2}+y_{2}\right)^{m}+\cdots+\left(x_{n}+y_{n}\right)^{m}\right\}^{1 / m}
\end{aligned}
$$

where $x_{i}, y_{i} \geqq 0, m>1$.
(ii) From the law of cosines, we get

$$
c_{n} a_{n} \cos B_{n}=\sum_{0}^{n-1} c_{i} a_{i} \cos B_{i}
$$

Squaring and applying CAUCHY's inequality gives

$$
c_{n}^{2} \cos ^{2} B_{n} \leqq\left\{\left\{\sum_{0}^{n-1} a_{i}^{2} / a_{n}^{2}\right\}\left\{\sum_{0}^{n-1} c_{i}^{2} \cos ^{2} B_{i}\right\}\right.
$$

Whence,

$$
c_{n}^{2} \sin ^{2} B_{n} \geqq \sum_{0}^{n-1} c_{i}^{2} \sin ^{2} B_{b}
$$

or that

$$
p_{n}^{2} \geqq \sum_{0}^{n-1} p_{i}^{2} \text { and similarly for } q_{n}^{2} \text { and } r_{n}{ }^{2}
$$

Equality holds for $p_{n}{ }^{2}$ if and only if

$$
\frac{c_{i} \cos B_{i}}{a_{i}}=k \quad(i=0,1, \ldots, n-1)
$$

Therefore for equality for one altitude, similarity is sufficient but not ncce:sary. Equality for two or three altitudes holds if and only if the original n triangles are similar.
(iii) $2 \sum_{0}^{n-1} \Delta_{i}=\sum_{0}^{n-1} p_{i} a_{i} \leqq\left(\sum_{0}^{n-1} p_{i}{ }^{2}\right)^{\frac{1}{2}}\left(\sum_{0}^{n-1} a_{i}\right)^{\frac{1}{2}} \leqq p_{n} a_{n}=2 \Delta_{n}$.

Again, we have equality if and only if the original n triangles are similar.
(iv) By the arithmetic-geometric mean inequality,

$$
\Delta_{n} \geqq \Delta_{0}+\Delta_{1}+\cdots+\Delta_{n-1} \geqq n\left(\Delta_{0} \Delta_{1} \cdots \Delta_{n-1}\right)^{1 / n}
$$

or

$$
\Delta_{n}^{n} \geqq n^{n} \int_{0}^{n-1} \Delta_{i}
$$

with equality if and only if the original n triangles are congruent.
It also follows from (i) that

$$
\left\{\Sigma a_{i}^{m}\right\}^{1 / m}, \quad\left\{\Sigma b_{i}^{m}\right\}^{1 / m}, \quad\left\{\Sigma c_{i}^{m}\right\}^{1 / m} \quad(m>1)
$$

are the sides of a triangle.

Note II

INEQUALITIES FOR A TRIANGLE ASSOCIATED WITH n GIVEN TRIANGLES

Various inequalities concerning the elements of a triangle associated with n given triangles are derived. Two of these inecualities include, as special cases, two known inequalities for a pair of associated triangles.

1. Introduction

For any triangle $A B C$ it is known [1, p. 12] that

$$
\begin{equation*}
a b c \geqq(a+b-c)(b+c-a)(c+a-b) \tag{1}
\end{equation*}
$$

where for convenience the symbol $\{E\}$ will denote "with equality if and only if triangle $A B C$ is equilateral." A simple proof follows by noting that $a^{2} \geqq a^{2}-(b-c)^{2}$, etc. By interpreting (1) geometrically, we are led to several generalizations by an averaging process over the sides of the triangle. Dually, we are led to other inequalities by an averaging process over the angles of the triangle.

2. Area Inequality for Two Related Triangles

We consider another triangle $A^{\prime} B^{\prime} C^{\prime}$ where

$$
a^{\prime}=\frac{b+c}{2}, \quad b^{\prime}=\frac{c+a}{2}, \quad c^{\prime}=\frac{a+b}{2} .
$$

Since $s=s^{\prime}$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ is 'closer" to an equilateral triangle than $\triangle A B C$, we should expect that $\Delta^{\prime} \geqq \Delta\{E\}$. Since here, $\Delta^{\prime}=(a b c s)^{\frac{1}{2}}$, the latter inequality is equivalent to (1).

More generally, we should expect the same area inequality for any reasonable averaging transformation which makes $\triangle A^{\prime} B^{\prime} C^{\prime}$,,more equilateral" than $\triangle A B C$. More precisely, if

$$
\begin{aligned}
& a^{\prime}=u a+v b+w c, \\
& b^{\prime}=v a+w b+u c, \\
& c^{\prime}=w a+u b+v c,
\end{aligned}
$$

where

$$
u+v+w==1, u, v, w \geqq 0,
$$

then

$$
\begin{equation*}
s^{\prime}=s \text { and } \Delta^{\prime} \geqq \Delta\{E\} . \tag{2}
\end{equation*}
$$

This triangle inequality is equivalent to

$$
\begin{equation*}
(x a+y b+z c)(y a+z b+x c)(z a+x b+y c) \geqq(a+b-c)(c+a-b)(b+c-a) \tag{3}
\end{equation*}
$$

where

$$
x+y+z=1, \quad-1 \leqq x, y, z \leqq 1
$$

Expanding out and using

$$
\Sigma a=2 s, \quad \Sigma a b=s^{2}+4 R r+r^{2}, \quad a b c=4 R r s,
$$

(3) can be rewritten as
(4)

$$
\begin{aligned}
(1+x y z)\left(2 s^{3}\right. & \left.-6 s r^{2}\right)+12 \operatorname{Rrs}(5 x y z-\Sigma x y) \\
& \geqq\left(1-\Sigma x^{2} y\right) \Sigma a^{2} b+\left(1-\Sigma x y^{2}\right) \Sigma a b^{2} .
\end{aligned}
$$

For the special case when $x-1=y=z=0$ which corresponds to (1), (4) reduces to the well known inequality $R \geqq 2 r$.

A proof of (2) will follow from the next section.

3. Area Inequality for \boldsymbol{n} Triangles

Let a_{i}, b_{i}, c_{i} denote the sides of the n triangles $A_{i} B_{i} C_{i}(i=1,2, \ldots, n)$. Then the three numbers

$$
a=\sum w_{i} a_{i}, \quad b=\sum w_{i} b_{i}, \quad c=\sum w_{i} c_{i}
$$

where $\Sigma w_{i}=1, w_{i} \geqq 0$, are possible lengths of sides for a triangle $A B C$. Then,

$$
s=\sum_{i} w_{i} s_{i}
$$

and

$$
\Delta^{2}=\sum_{i} w_{i} s_{i} \sum_{i} w_{i}\left(s_{i}-a_{i}\right) \sum_{i} w_{i}\left(s_{i}-b_{i}\right) \sum_{i} w_{i}\left(s_{i}-c_{i}\right) .
$$

Using Cauchy's inequality twice,

$$
\begin{equation*}
\sqrt{\Delta} \geqq \sum_{i} w_{i} \sqrt{\Delta_{i}} \quad\left\{S_{n}\right\} \tag{5}
\end{equation*}
$$

where the symbol $\left\{S_{n}\right\}$ denotes "with equality if and only if the n triangles are directly similar". Also, since

$$
r^{2} s=(s-a)(s-b)(s-c) \quad \text { and } \quad 4 R \Delta=a b c
$$

we obtain by applying Hölder's inequality that

$$
\begin{equation*}
\left(r^{2} s\right)^{1 / 3} \geqq \sum_{i} w_{i}\left(r_{i}{ }^{2} s_{i}\right)^{1 / 3} \quad\left\{S_{n}\right\}, \tag{6}
\end{equation*}
$$

(7)

$$
(\Delta R)^{1 / 3} \geqq \sum_{i} w_{i}\left(\Delta_{i} R_{i}\right)^{1 / 3} \quad\left\{S_{n}\right\} .
$$

If we now let

$$
\begin{equation*}
n=3, \quad\left(a_{2}, b_{2}, c_{2}\right)=\left(b_{1}, c_{1}, a_{1}\right), \quad\left(a_{3}, b_{3}, c_{3}\right)=\left(c_{1}, a_{1}, b_{1}\right), \tag{8}
\end{equation*}
$$

then (5) reduces to (2), (6) reduces to $r \geqq r_{1}$ and (7) reduces to $\Delta R \geqq \Delta_{1} R_{1}$ or equivalently $R r \geqq R_{1} r_{1}$ (all $\{E\}$).

4. More Inequalities for \boldsymbol{n} Triangles

We now consider an averaging process over the angles of the n triangles $A_{i} B_{i} C_{i}$. Let the angles of $\triangle A B C$ be given by

$$
A=\sum_{i} w_{i} A_{i}, \quad B=\sum_{i} w_{i} B_{i}, \quad C=\sum_{i} w_{i} C_{i}
$$

where the w_{i}^{\prime} 's are weights as before. Since $\triangle A B C$ is again in some sense more equilateral than the set of n triangles $A_{i} B_{i} C_{i}$, we should expect some inequality pertaining to the isoperimetric ratio s^{2} / Δ. More precisely, we will show that

$$
\begin{equation*}
\frac{s^{2}}{\Delta} \leqq \sum_{i} w_{i} \frac{s_{i}{ }^{2}}{\Delta_{i}}\left\{S_{n}\right\} . \tag{9}
\end{equation*}
$$

Since $\cot \theta / 2$ is convex for $0 \leqq \theta \leqq \pi$ and

$$
\frac{s^{2}}{\Delta}=\cot \sum_{i} w_{i} \frac{A_{i}}{2}+\cot \sum_{i} w_{i} \frac{B_{i}}{2}+\cot \sum_{i} w_{i} \frac{C_{i}}{2},
$$

we get

$$
\frac{s^{2}}{\Delta} \leqq \sum_{i} w_{i}\left\{\cot \frac{A_{i}}{2}+\cot \frac{B_{i}}{2}+\cot \frac{C_{i}}{2}\right\}
$$

which is equivalent to (9).
In a similar fashion, using the concavity of $\sin x$, we give extensions for the following known result [1, p. 90], [2, p. 326]:

If $A^{\prime}, B^{\prime}, C^{\prime}$ denote the second points of intersection of the angle-bisectors and the circumcircle of a triangle $A B C$, then

$$
\begin{equation*}
\text { area } A^{\prime} B^{\prime} C^{\prime} \geqq \text { area } A B C \quad\{E\} . \tag{10}
\end{equation*}
$$

5. Inequality Involving Circumradius and Inradius

$$
\frac{r}{4 R}=\sin \sum_{i} w_{i} \frac{A_{i}}{2} \sin \sum_{i} w_{i} \frac{B_{i}}{2} \sin \sum_{i} w_{i} \frac{C_{i}}{2} \geqq \sum_{i} w_{i} \sin \frac{A_{i}}{2} \sum_{i} w_{i} \sin \frac{B_{i}}{2} \sum_{i} w_{i} \sin \frac{C_{i}}{2} .
$$

Then by Hölder's inequality,

$$
\frac{r}{4 R} \geqq\left\{\sum_{i} w_{i}\left(\sin \frac{A_{i}}{2} \sin \frac{B_{i}}{2} \sin \frac{C_{i}}{2}\right)^{\frac{1}{3}}\right\}^{3}
$$

or

$$
\begin{equation*}
\left\{\frac{r}{R}\right\}^{\frac{1}{3}} \geqq \sum_{\mathrm{i}} w_{i}\left\{\frac{r_{i}}{R_{i}}\right\}^{\frac{1}{3}} \quad\left\{S_{n}\right\} \tag{11}
\end{equation*}
$$

Then trivially, $r / R \geqq \min _{i}\left(r_{i} / R_{i}\right)$.

6. Inequality Involving Semi-Perimeter and Circumradius

$$
\frac{s}{R}=\sin \sum_{i} w_{i} A_{i}+\sin \sum_{i} w_{i} B_{i}+\sin \sum_{i} w_{i} C_{i} \geqq \sum_{i} w_{i}\left(\sin A_{i}+\sin B_{i}+\sin C_{i}\right)
$$

or

$$
\begin{equation*}
\frac{s}{R} \geqq \sum_{i} w_{i} \frac{s_{i}}{R_{i}} \quad\left\{S_{n}\right\} . \tag{12}
\end{equation*}
$$

Then trivially, $s / R \geqq \min _{i}\left(s_{i} / R_{i}\right)$.

7. Inequality Involving Area and Circumradius

Since $4 \Delta R=a b c$,

$$
\frac{\Delta}{2 \boldsymbol{R}^{2}}=\sin \sum_{i} w_{i} A_{i} \sin \sum_{i} w_{i} B_{i} \sin \sum_{i} w_{i} C_{i} \geqq\left\{\sum_{i} w_{i}\left(\sin A_{i} \sin B_{i} \sin C_{i}\right)^{\frac{1}{3}}\right\}^{3}
$$

or

$$
\begin{equation*}
\left\{\frac{\Delta}{R^{2}}\right\}^{\frac{1}{3}} \geqq \sum_{i} w_{i}\left\{\frac{\Delta_{i}}{\left.R_{i}\right\}^{\frac{1}{3}}} \quad\left\{S_{n}\right\} .\right. \tag{13}
\end{equation*}
$$

Then trivially, $\Delta / R^{2} \geqq \min _{i}\left(\Delta_{i} / R_{i}{ }^{2}\right)$.

8. Special Cases

We now specialize inequalities (9), (11), (12) and (13) by subjecting them to conditions (8). These then become

$$
\begin{array}{ll}
\frac{\Delta}{s^{2}} \geqq \frac{\Delta_{1}}{s_{1}{ }^{2}} & \{E\}, \\
\frac{r}{R} \geqq \frac{r_{1}}{R_{1}} & \{E\}, \tag{11}\\
\frac{s}{R} \geqq \frac{s_{1}}{R_{1}} & \{E\}, \\
\frac{\Delta}{R^{2}} \geqq \frac{\Delta_{1}}{R_{1}{ }^{2}} & \{E\} .
\end{array}
$$

$(12)^{\prime}$

If additionally, $\triangle A B C$ is constrained to have the same circumcircle as $\triangle A_{1} B_{1} C_{1}$, then
(11)"

$$
(12)^{\prime \prime}
$$

$$
\begin{aligned}
r \geqq r_{1} & \{E\}, \\
s \geqq s_{1} & \{E\}, \\
\Delta \geqq \Delta_{1} & \{E\} .
\end{aligned}
$$

(13)"

It is to be noted that (10) is a special case of (13)".
We conclude with some trigonometric versions of the latter inequalities by specializing conditions (8) still further, i.e., $w_{1}=w_{2}=1 / 2, w_{3}=0$ and dropping all subscripts. Since,

$$
\frac{2 s^{2}}{\Delta}=\frac{(\sin A+\sin B+\sin C)^{2}}{\sin A \sin B \sin C},
$$

(9)' becomes
(9)' $\quad\left\{\frac{r}{2 R}\right\}^{\frac{1}{2}}=\left\{2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}\right\}^{\frac{1}{2}} \leqq \frac{\cos \frac{A}{2} \sin \frac{A}{2}+\cos \frac{B}{2} \sin \frac{B}{2}+\cos \frac{C}{2} \sin \frac{C}{2}}{\cos \frac{A}{2}+\cos \frac{B}{2}+\cos \frac{C}{2}}$
or equivalently
(9)"

$$
\cot \frac{\pi-A}{4}+\cot \frac{\pi-B}{4}+\cot \frac{\pi-C}{4} \leqq \cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2} \quad\{E\} .
$$

Similarly, we obtain

$$
\begin{array}{ll}
\sin \frac{\pi-A}{4} \sin \frac{\pi-B}{4} \sin \frac{\pi-C}{4} \geqq \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} & \{E\}, \\
\cos \frac{A}{2}+\cos \frac{B}{2}+\cos \frac{C}{2} \geqq \sin A+\sin B+\sin C & \{E\} . \tag{12}
\end{array}
$$

In a subsequent paper, we will give a more direct derivation of the last three inequalities.

REFERENCES

1. O. Bottema, R. Ž. Đorøević, R. R. Janić, D. S. Mitrinović, P. M. Vastć: Geometric Inequalities, Groningen, 1969.
2. M. S. Klamkin: On some geometrical inequalities. Math. Teacher 60 (1967), 323-327.

NOTE III

INEQUALITIES INVOLVING THE ELEMENTS OF TWO TRIANGLES

An inequality involving the elements of two triangles is given. This inequality includes, as special cases, the ones of Barrow and Tomescu as well as other well known ones.

The inequality

$$
\begin{equation*}
a^{\prime 2}+b^{\prime 2}+c^{\prime 2} \geqq(-1)^{n+1}\left\{2 a^{\prime} b^{\prime} \cos n C+2 b^{\prime} c^{\prime} \cos n A+2 c^{\prime} a^{\prime} \cos n B\right\} \tag{1}
\end{equation*}
$$

(n-integral), relating to the elements of two triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ follows immediately by expanding out

$$
\begin{equation*}
\left\{a^{\prime}+(-1)^{n}\left(b^{\prime} \cos n C+c^{\prime} \cos n B\right)\right\}^{2}+\left\{b^{\prime} \sin n C-c^{\prime} \sin n B\right\}^{2} \geqq 0 . \tag{2}
\end{equation*}
$$

There is equality, if and only if,

$$
\begin{equation*}
\frac{\sin A^{\prime}}{\sin n A}=\frac{\sin B^{\prime}}{\sin n B}=\frac{\sin C^{\prime}}{\sin n C} . \tag{3}
\end{equation*}
$$

And (3) implies that

$$
n A=m \pi+A^{\prime}, \quad n B=m \pi+B^{\prime}, \quad n C=m \pi+C^{\prime}
$$

if $\mathrm{n}=3 m+1$ and that

$$
n A=(m+1) \pi-A^{\prime}, \quad n B=(m+1) \pi-B^{\prime}, \quad n C=(m+1) \pi-C^{\prime}
$$

if $n=3 m+2$. For if $n=3 m+1$, let $n A=m \pi+A_{1}$, etc., then

$$
\frac{\sin A^{\prime}}{\sin A_{1}}=\frac{\sin B^{\prime}}{\sin B_{1}}=\frac{\sin C^{\prime}}{\sin C_{1}} .
$$

Since also $A_{1}+B_{1}+C_{1}=\pi, \triangle A^{\prime} B^{\prime} C^{\prime} \sim \triangle A_{1} B_{1} C_{1}$ and the rest follows (and similarly for the case $n=3 m+2$).

The case when $n=1$ had been established by Barrow [1, p. 24] and used by Mordell [2] in his proof of the Erdös-Mordell inequality.
Equivalently, it can be rewritten in the form

$$
\begin{equation*}
a^{\prime 2}+b^{\prime 2}+c^{\prime 2} \geqq \frac{a^{\prime} b^{\prime}}{a b}\left(a^{2}+b^{2}-c^{2}\right)+\frac{b^{\prime} c^{\prime}}{b c}\left(b^{2}+c^{2}-a^{2}\right)+\frac{c^{\prime} a^{\prime}}{a c}\left(c^{2}+a^{2}-b^{2}\right) . \tag{4}
\end{equation*}
$$

If also $a^{\prime}=b^{\prime}=c^{\prime}$, then

$$
a^{3}+b^{3}+c^{3}+5 a b c \geqq(a+b)(b+c)(c+a) \quad\{E\} .
$$

The symbol $\{E\}$ is to mean 'with equality if and only if the triangle is equilateral." Since $a^{3}+b^{3}+c^{3} \geqq 3 a b c$, this is a stronger inequality then

$$
8\left(a^{3}+b^{3}+c^{3}\right) \geqq 3(a+b)(b+c)(c+a), \quad[1, \text { p. 12]. }
$$

The case $n=2$ is equivalent to

$$
\begin{equation*}
\frac{a^{2}}{a^{\prime}}+\frac{b^{2}}{b^{\prime}}+\frac{c^{2}}{c^{\prime}} \leqq \frac{R^{2}\left(a^{\prime}+b^{\prime}+c^{\prime}\right)^{2}}{a^{\prime} b^{\prime} c^{\prime}} \tag{5}
\end{equation*}
$$

and corresponds to problem E 2221 proposed by Tomescu [2]. The latter inequality is a rather "rich" one since it includes the following well known inequalities as special cases:

If $a^{\prime}=b^{\prime}=c^{\prime}$, then

$$
\begin{equation*}
a^{2}+b^{2}+c^{2} \leqq 9 R^{2} \quad\{E\}, \quad[1, \text { p. } 52], \tag{5.1}
\end{equation*}
$$

or equivalently

$$
\sin ^{2} A+\sin ^{2} B+\sin ^{2} C \leqq \frac{9}{4} \quad\{E\}, \quad[1, \text { p. 18]. }
$$

Since,

$$
\sum \sin ^{2} A=2+2 \cos A \cos B \cos C
$$

we also have

$$
\cos A \cos B \cos C \leqq \frac{1}{8} \quad\{E\}, \quad[1, \text { p. 25]. }
$$

If $a^{\prime}=a, b^{\prime}=b, c^{\prime}=c$, then

$$
\begin{equation*}
R^{2}(a+b+c) \geqq a b c \quad\{E\} \tag{5.2}
\end{equation*}
$$

or
$\sin A+\sin B+\sin C \geqq 4 \sin A \sin B \sin C=\sin 2 A+\sin 2 B+\sin 2 C\{E\},[1, \mathrm{p} .18]$.
Since also $a b c=4 \mathrm{Rrs}$,

$$
R \geqq 2 r\{E\}, \quad[1, \text { p. } 48] .
$$

If $a^{\prime}=a^{2}, b^{\prime}=b^{2}, c^{\prime}=c^{2}$ ($\triangle A B C$ is acute), then

$$
\begin{equation*}
R\left(a^{2}+b^{2}+c^{2}\right) \geqq \sqrt{3} a b c \quad\{E\} \tag{5.3}
\end{equation*}
$$

or

$$
\begin{aligned}
\sin ^{2} A+\sin ^{2} B+\sin ^{2} C & \geqq 2 \sqrt{3} \sin A \sin B \sin C \\
& =\frac{\sqrt{3}}{2}(\sin 2 A+\sin 2 B+\sin 2 C)\{E\} .
\end{aligned}
$$

Since also $a b c=4 R \Delta$,

$$
a^{2}+b^{2}+c^{2} \geqq 4 \sqrt{3} \Delta \quad\{E\}, \quad[1, \text { p. } 42]
$$

If $a^{\prime}=b, b^{\prime}=c, c^{\prime}=a$, then

$$
\begin{equation*}
R^{2}(a+b+c)^{2} \geqq a^{3} c+b^{3} a+c^{3} b \quad\{E\}, \tag{5.4}
\end{equation*}
$$

and similarly

$$
R^{2}(a+b+c)^{2} \geqq a c^{3}+b a^{3}+c b^{3} \quad\{E\} .
$$

Then by adding,

$$
2 R^{2}\left\{\sum a\right\}^{2} \geqq\left(\sum a\right)\left\{\sum a^{3}\right\}-\sum a^{4}
$$

Letting $a^{\prime}=b^{\prime}=c^{\prime}(n \neq 3 m)$ in (1), we get

$$
\begin{equation*}
\frac{3}{2} \geqq(-1)^{n+1}\{\cos n A+\cos n B+\cos n C\} \quad\{E\} \tag{6}
\end{equation*}
$$

Since

$$
\begin{gathered}
\sum \cos 2 n A=4(-1)^{n} \cos n A \cos n B \cos n C-1, \\
\sum \cos (2 n+1) A=4(-1)^{n} \sin \frac{2 n+1}{2} A \sin \frac{2 n+1}{2} B \sin \frac{2 n+1}{2} C+1,
\end{gathered}
$$

we also have

$$
\begin{gather*}
1 \geqq 8(-1)^{n+1} \cos n A \cos n B \cos n C \quad(2 n \neq 3 m) \quad\{E\}, \tag{6.1}\\
1 \geqq 8(-1)^{n} \sin \frac{2 n+1}{2} A \sin \frac{2 n+1}{2} B \sin \frac{2 n+1}{2} C \quad(2 n+1 \neq 3 m) \quad\{E\} . \tag{6.2}
\end{gather*}
$$

Additionally, it is easy to show that

$$
\begin{equation*}
1 \geqq(-1)^{m} \cos 3 m A \cos 3 m B \cos 3 m C \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
1 \geqq(-1)^{m} \sin \frac{6 m+3}{2} A \sin \frac{6 m+3}{2} B \sin \frac{6 m+3}{2} C . \tag{8}
\end{equation*}
$$

(1) becomes rather complicated if we express the trigonometric functions in terms of the sides for large n. Consequently, we conclude with the case $n=4$, i.e.,

$$
\begin{equation*}
\frac{R^{2}\left(a^{\prime}+b^{\prime}+c^{\prime}\right)^{2} a^{2} b^{2} c^{2}}{a^{\prime} b^{\prime} c^{\prime}} \geqq \sum \frac{\left[a^{2}\left(b^{2}+c^{2}-a^{2}\right)\right]^{2}}{a^{\prime}} \tag{9}
\end{equation*}
$$

If $a^{\prime}=b^{\prime}=c^{\prime}$, then

$$
\begin{equation*}
9 R^{2} a^{2} b^{2} c^{2}=\frac{9 a^{4} b^{4} c^{4}}{16 \Delta^{2}} \geqq \sum\left[a^{2}\left(b^{2}+c^{2}-a^{2}\right)\right]^{2} \quad\{E\} \tag{9.1}
\end{equation*}
$$

(9.1) is stronger than $3 \sqrt{3}(a b c)^{2} \geqq(4 \Delta)^{3}$ [1, p. 46] since by CAUCHY's inequality

$$
27 a^{4} b^{4} c^{4} \geqq \sum\left[4 \Delta a^{2}\left(b^{2}+c^{2}-a^{2}\right)\right]^{2} \sum 1 \geqq\left[64 \Delta^{3}\right]^{2} \quad\{E\} .
$$

If $a^{\prime}=a, b^{\prime}=b, c^{\prime}=c$, then

$$
\begin{equation*}
R^{2}(a+b+c)^{2} a b c \geqq \sum a^{3}\left(b^{2}+c^{2}-a^{2}\right)^{2} \quad\{E\} . \tag{9.2}
\end{equation*}
$$

If $a^{\prime}=a^{2}, b^{\prime}=b^{2}, c^{\prime}=c^{2}(\triangle A B C$ - acute), then

$$
\begin{equation*}
R^{2}\left(a^{2}+b^{2}+c^{2}\right) \geqq \sum a^{2}\left(b^{2}+c^{2}-a^{2}\right)^{2} \tag{9.3}
\end{equation*}
$$

or

$$
\frac{\left(a^{2}+b^{2}+c^{2}\right)^{2}}{64 \Delta^{2}} \geqq \cos ^{2} A+\cos ^{2} B+\cos ^{2} C \quad\{E\} .
$$

The latter is stronger than (5.3) since [1, p. 24]

$$
\sum \cos ^{2} A \geqq 3 / 4
$$

If $a^{\prime}=a^{2}\left(b^{2}+c^{2}-a^{2}\right)$, etc., ($\triangle A B C-$ acute $)$, then

$$
\begin{equation*}
(a b c)^{2} \geqq\left(a^{2}+b^{2}-c^{2}\right)\left(b^{2}+c^{2}-a^{2}\right)\left(c^{2}+a^{2}-b^{2}\right) \quad\{E\} . \tag{9.4}
\end{equation*}
$$

The inequality is also valid for non-acute triangles since then the r.h.s. becomes negative. This is a weaker inequality than [1, p. 12]

$$
a b c \geqq(a+b-c)(b+c-a)(c+a-b)
$$

for

$$
\Pi(a+b-c)^{2} \geqq \Pi\left(a^{2}+b^{2}-c^{2}\right)
$$

implies that

$$
\frac{32 \Delta^{4}}{(a+b+c)^{2}} \geqq a^{2} b^{2} c^{2} \cos A \cos B \cos C
$$

or

$$
\frac{r^{2}}{2 R^{2}} \geqq \cos A \cos B \cos C=\frac{r^{2}}{2 R^{2}}-I H^{2} \quad[1, \text { p. 50] }
$$

and conversely. Also (9.4) is a weaker inequality than either

$$
\begin{equation*}
3 \sqrt{3}(a b c)^{2} \geqq(4 \Delta)^{3} \quad\{E\}, \quad[1, \text { p. } 46] \tag{10}
\end{equation*}
$$

or
(11) $(4 \Delta)^{6} \geqq 27\left(a^{2}+b^{2}-c^{2}\right)^{2}\left(b^{2}+c^{2}-a^{2}\right)^{2}\left(c^{2}+a^{2}-b^{2}\right)^{2} \quad\{E\},[1$, p. 42].

For coupling (10) and (11), we obtain

$$
27(a b c)^{4} \geqq(4 \Delta)^{6} \geqq 27\left(a^{2}+b^{2}-c^{2}\right)^{2}\left(b^{2}+c^{2}-a^{2}\right)^{2}\left(c^{2}+a^{2}-b^{2}\right)^{2} \quad\{E\} .
$$

In a subsequent paper, we will consider related trigonometric inequalities.

REFERENCES

1. O. Bottema, R. Ž. Đorbević, R. R. Janić, D. S. Mitrinović, P. M. Vasićí Geometric Inequalities. Groningen 1969.
2. L. J. Mordell: On geometric problems of Erdös and Oppenheim. Math. Gaz. 46 (1962), 213-215.

Note IV

INEQUALITIES INVOLVING TWO TRIANGLES OR TETRAHEDRONS

An inequality of Živanović relating to the area of a triangle associated with a given equilateral triangle is extended in several different ways.

0. Introduction

In this note, we extend the following result of Živanović [1, 2] in several ways:
If P denotes any point within or on an equilateral triangle $A B C$ and if $A^{\prime}, B^{\prime}, C^{\prime}$ denote points symmetrically situated to P with respect to the sides $B C, C A, A B$, then

$$
\begin{equation*}
\text { area } A^{\prime} B^{\prime} C^{\prime} \leqq \text { area } A B C \tag{1}
\end{equation*}
$$

with equality if and only if P is the centroid of $A B C$.

1. An affine equivalent

The first extension is rather simple. We start with an arbitrary triangle $A B C$ and instead of taking mirror images of P across the sides, we "reflect" P along rays parallel to the respective medians as in Fig. 1. Inequality (1) is still valid. A proof follows immediately by affinely transforming $A B C$ into an equilateral triangle (which always can be done). Since parallelism, ratio of areas and ratio of lengths of segments are preserved, the result is equivalent to that of Z̈rivanović.

Fig. 1

2. Mirror reflections in an arbitrary triangle

We now show that (1) is also valid for arbitrary non-obtuse triangles. Here,

$$
\begin{gathered}
a r_{1}+b r_{2}+c r_{3}=2 \Delta, \\
\Delta^{\prime}=2\left[r_{2} r_{3} \sin A+r_{3} r_{1} \sin B+r_{1} r_{2} \sin C\right] \\
=4 \Delta\left[\frac{r_{2} r_{3}}{b c}+\frac{r_{3} r_{1}}{c a}+\frac{r_{1} r_{2}}{a b}\right]
\end{gathered}
$$

where Δ and Δ^{\prime} denote the areas of triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, respectively.

Changing to areal coordinates (except for a factor of 2)

$$
x=a r_{1}, \quad y=b r_{2}, \quad z=c r_{3},
$$

we wish to maximize

$$
I=\frac{a^{2} b^{2} c^{2}}{4} \frac{\Delta^{\prime}}{\Delta}=c^{2} x y+a^{2} y z+b^{2} z x
$$

subject to the constraint

$$
x+y+z=2 \Delta .
$$

At this stage, we first obtain the maximum by standard calculus techniques. Then from a knowledge of the result, we give a more elementary derivation by establishing the suggested extension of the well

Fig. 2 known inequality

$$
\frac{x+y+z}{3} \geqq\left\{\frac{x y+y z+z x}{3}\right\}^{1 / 2}
$$

Eliminating z,

$$
I=2 \Delta b^{2} x+2 \Delta a^{2} y+\left(c^{2}-a^{2}-b^{2}\right) x y-b^{2} x^{2}-a^{2} y^{2}
$$

subject to

$$
x+y \leqq 2 \Delta, \quad x, y \geqq 0 .
$$

For an interior point maximum, it is necessary that

$$
\begin{aligned}
& \frac{\partial I}{\partial x}=0=2 \Delta b^{2}+\left(c^{2}-a^{2}-b^{2}\right) y-2 b^{2} x \\
& \frac{\partial I}{\partial x}=0=2 \Delta y^{2}+\left(c^{2}-a^{2}-b^{2}\right) x-2 a^{2} y
\end{aligned}
$$

Solving:
(2) $8 \Delta x=a^{2}\left(b^{2}+c^{2}-a^{2}\right), \quad 8 \Delta y=b^{2}\left(c^{2}+a^{2}-b^{2}\right), \quad 8 \Delta z=c^{2}\left(a^{2}+b^{2}-c^{2}\right)$.

Using the 2 -nd derivative test, we show that the latter point corresponds to a maximum.

$$
\begin{aligned}
& I_{x x}=-2 b^{2}, \quad I_{y y}=-2 a^{2}, \quad I_{x y}=c^{2}-a^{2}-b^{2} \\
& I_{x x} I_{y y}-I_{x y}{ }^{2}=4 a^{2} b^{2}-\left(c^{2}-a^{2}-b^{2}\right)^{2}=16 \Delta^{2}>0
\end{aligned}
$$

Corresponding to (2), we obtain

$$
I_{\max }=\frac{a^{2} b^{2} c^{2}}{4} \frac{\Delta^{\prime}}{\Delta}=\frac{a^{2} b^{2} c^{2}}{64 \Delta^{2}} \sum\left(b^{2}+c^{2}-a^{2}\right)\left(c^{2}+a^{2}-b^{2}\right)
$$

or

$$
\Delta_{\max }^{\prime}=\Delta
$$

To complete the proof, we now check the endpoint extrema. For $x=0$, $I=a^{2} y(2 \Delta-y)$. Thus, $I_{\max }=a^{2} \Delta^{2}$. Similarly for $y=0, I_{\max }=b^{2} \Delta^{2}$ and for $x+y=2 \Delta$ or $z=0, I_{\max }=c^{2} \Delta^{2}$. Thus on the boundary of $A B C$,

$$
\frac{\Delta_{\max }^{\prime}}{\Delta}=\frac{4 \Delta^{2}}{a^{2} b^{2} c^{2}} \max \left\{a^{2}, b^{2}, c^{2}\right\}=\max \left\{\sin ^{2} A, \sin ^{2} B, \sin ^{2} C\right\} .
$$

For the case when one angle of $A B C$ is a right angle, the maximizing point P occurs in the interior of the hypotenuse, i.e., if $C=\pi / 2$, then $a^{2}+b^{2}=c^{2}$ and

$$
P(x, y, z)=P(a b / 2, a b / 2,0) .
$$

The previously established inequality suggests the following inequality

$$
\begin{equation*}
\frac{a p+b q+c r}{4 \Delta} \geqq\left\{\frac{p q}{a b}+\frac{q r}{b c}+\frac{r p}{c a}\right\}^{1 / 2} \tag{3}
\end{equation*}
$$

where a, b, c are sides of a non-obtuse triangle, $p, q, r \geqq 0$, and with equality if and only if

$$
\frac{p}{a\left(b^{2}+c^{2}-a^{2}\right)}=\frac{q}{b\left(c^{2}+a^{2}-b^{2}\right)}=\frac{r}{c\left(a^{2}+b^{2}-c^{2}\right)} .
$$

To establish (3) (which also implies (1)) in an elementary fashion, let

$$
p=a\left(b^{2}+c^{2}-a^{2}\right) u, \quad q=b\left(c^{2}+a^{2}-b^{2}\right) v, \quad r=c\left(a^{2}+b^{2}-c^{2}\right) w .
$$

(3) now follows since it can be rewritten as

$$
\begin{aligned}
& \left(b^{2}+c^{2}-a^{2}\right)\left(c^{2}+a^{2}-b^{2}\right)\left(8 \Delta^{2}-a^{2} b^{2}\right)(u-v)^{2} \\
& \quad+\left(c^{2}+a^{2}-b^{2}\right)\left(a^{2}+b^{2}-c^{2}\right)\left(8 \Delta^{2}-b^{2} c^{2}\right)(v-w)^{2} \\
& \quad+\left(a^{2}+b^{2}-c^{2}\right)\left(b^{2}+c^{2}-a^{2}\right)\left(8 \Delta^{2}-c^{2} a^{2}\right)(w-u)^{2} \geqq 0
\end{aligned}
$$

(note that $16 \Delta^{2}=\sum\left(2 a^{2} b^{2}-a^{4}\right)$).

3. A perimeter inequality

Referring again to Figure 2 and assuming $A B C$ is equilateral, we will show that

$$
\begin{equation*}
2 s / \sqrt{3} \geqq s^{\prime} \geqq s \tag{4}
\end{equation*}
$$

(where as usual s denotes the semi-perimeter).
Since

$$
\begin{gathered}
B^{\prime} C^{\prime 2}=4 r_{2}^{2}+4 r_{3}^{2}-8 r_{2} r_{3} \cos 2 \pi / 3, \\
s^{\prime}=\sum\left\{r_{2}^{2}+r_{2} r_{3}+r_{3}^{2}\right\}^{1 / 2} .
\end{gathered}
$$

Since also,

$$
\begin{array}{r}
\left\{x^{2}+x y+y^{2}\right\}^{1 / 2} \leqq x+y \text { (with equality if and only if } x y=0 \text {), } \\
\left\{x^{2}+x y+y^{2}\right\}^{1 / 2} \geqq \frac{\sqrt{3}}{2}(x+y) \text { (with equality if and only if } x=y \text {), }
\end{array}
$$

we get

$$
2\left(r_{1}+r_{2}+r_{3}\right) \geqq s^{\prime} \geqq \sqrt{3}\left(r_{1}+r_{2}+r_{3}\right)
$$

which is equivalent to (4). The $1 . \mathrm{h} . \mathrm{s}$. equality occurs if and only if the point P is located at one of the vertices of $A B C$. The r.h.s. equality occurs if and only if P is located at the centroid of $\triangle A B C$.

4. Extension of (1) to tetrahedra

If P denotes any point within or on a regular tetrahedron $A B C D$ and if $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ denote points symmetrically situated to P with respect to the faces $B C D, C D A, D A B, A B C$, then

$$
\begin{equation*}
\text { volume } A^{\prime} B^{\prime} C^{\prime} D^{\prime} \leqq\left(\frac{2}{3}\right)^{3} \text { volume } A B C D \tag{5}
\end{equation*}
$$

with equality if and only if P is the centroid of $A B C D$.
Assuming that $A B C D$ has edge length 2 , its volume is given by $V(A B C D)=2 \sqrt{2} / 3$.
Also

$$
V\left(A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right)=V\left(P A^{\prime} B^{\prime} C^{\prime}\right)+V\left(P B^{\prime} C^{\prime} D^{\prime}\right)+V\left(P C^{\prime} D^{\prime} A^{\prime}\right)+V\left(P D^{\prime} A^{\prime} B^{\prime}\right) .
$$

We now use the volume formula for a tetrahedron as a function of the lengths of three coterminal edges and the angles between them [3]:

$$
V=\frac{e_{1} e_{2} e_{3}}{6}\left|\begin{array}{ccc}
1 & \cos \theta_{12} & \cos \theta_{13} \\
\cos \theta_{12} & 1 & \cos \theta_{23} \\
\cos \theta_{13} & \cos \theta_{23} & 1
\end{array}\right|^{1 / 2} .
$$

If θ denotes a dihedral angle of $A B C D$, then $\cos \theta=1 / 3$ and

$$
\Varangle A^{\prime} P B^{\prime}=\Varangle B^{\prime} P C^{\prime}=\Varangle C^{\prime} P A^{\prime}=\pi-\theta .
$$

Now letting

$$
P A^{\prime}=2 r_{1}, \quad P B^{\prime}=2 r_{2}, \quad P C^{\prime}=2 r_{3}, \quad P D^{\prime}=2 r_{4},
$$

we obtain

$$
V\left(P A^{\prime} B^{\prime} C^{\prime}\right)=\frac{4 r_{1} r_{2} r_{3}}{3}\left\{1-\cos ^{2} \theta-2 \cos ^{3} \theta\right\}^{1 / 2}=\frac{16 \sqrt{3} r_{1} r_{2} r_{3}}{27}
$$

and that

$$
V\left(A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right)=\frac{16 \sqrt{3}}{27}\left\{r_{1} r_{2} r_{3}+r_{2} r_{3} r_{4}+r_{3} r_{4} r_{1}+r_{4} r_{1} r_{2}\right\} .
$$

The r_{i} 's satisfy

$$
r_{1}+r_{2}+r_{3}+r_{4}=\frac{3 V}{F}=\frac{2 \sqrt{6}}{3}
$$

where F is the face area of $\triangle A B C$. Inequality (5) now follows immediatcly from the known inequality [4] for symmetric functions

$$
r_{1}+r_{2}+r_{3}+r_{4} \geqq\left\{\frac{r_{1} r_{2} r_{3}+r_{2} r_{3} r_{4}+r_{3} r_{4} r_{1}+r_{4} r_{1} r_{2}}{4}\right\}^{1 / 3}
$$

with equality if and only if $r_{1}=r_{2}=r_{3}=r_{4}$ or equivalently that P is the centroid of $A B C D$.

If instead of reflecting P an equal distance across the faces, we reflect twice the distance across the faces (so that $P A^{\prime}$ is now $3 r_{1}$ instead of $2 r_{1}$, etc.), (5) becomes

$$
V\left(A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right) \leqq V(A B C D)
$$

5. An affine equivalent for the tetrahedron

By an affine transformation 4. extends analogously to 1. (the affine equivalent of (1)).

6. A perimeter inequality for regular tetrahedrons

Here we obtain the 3 -dimensional version of 3 . where we are reflecting P twice the distance across the faces. If E denotes the sum of the lengths of all the edges of $A B C D$, then

$$
\begin{equation*}
E \sqrt{3 / 2} \geqq E^{\prime} \geqq E . \tag{6}
\end{equation*}
$$

The l.h.s. equality occurs if and only if P coincides with a vertex of $A B C D$ whereas the r.h.s. equality occurs if and only if P is the centroid of $A B C D$.

Here,

$$
A^{\prime} B^{\prime}=3\left\{r_{1}^{2}+\frac{2 r_{1} r_{2}}{3}+\mathrm{r}_{1}^{2}\right\}^{1 / 2}
$$

and thus

$$
3\left(r_{1}+r_{2}\right) \geqq A^{\prime} B^{\prime} \geqq \sqrt{6}\left(r_{1}+r_{2}\right)
$$

Whence,

$$
3 \sum\left(r_{1}+r_{2}\right) \geqq E^{\prime} \geqq \sqrt{6} \sum\left(r_{1}+r_{2}\right)
$$

or

$$
9\left(r_{1}+r_{2}+r_{3}+r_{4}\right) \geqq E^{\prime} \geqq 3 \sqrt{6}\left(r_{1}+r_{2}+r_{3}+r_{4}\right)
$$

which is equivalent to (6).
In a subsequent paper, we will give further extensions to simplices and also consider geometric properties other than length and content.

REFERENCES

1. Ž. Živanović: Certaines inégalités relatives au triangle. These Publications № 181 - № 196 (1967), 69-72.
2. O. Bottema, R. Ž. Đordević, R. R. Janić, D. S. Mitrinović, P. M. Vasić: Geometric Inequalities. Groningen 1969, p. 91.
3. D. Y. Sommerville: Analytic Geometry of Three Dimensions. Cambridge, 1947, p. 35.
4. D. S. Mitrinović: Elementary Ineqalities. Groningen, 1964 p. 123.

Ford Motor Company,
Dearborn, Michigan 48121, USA

