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PREFACE

For partial differential equations one can pose the following problems:
PROBLEM1. To determine the general solution of the given equation.
PROBLEM2. To determine the particular solution of the given equation,
which also satisfies some given additional conditions.

In the beginning the theory of partial differential equations was directed
only to the solution of Problem 1. The expression

(1) u(x, y) =f(x+ay) +g(x-ay),

obtained in 1747 by d'ALEMBERTand EULERis probably the first example of
a general solution. It presents the general solution of the classical wave equation

(2)

where a is a constant.

This approach to partial differential equations dominated in the 18th
and the 19th century and has led to important results. The theory of LAP-
LACE(communicated to the Academy of Sciences in Paris in 1771, and pub-
lished in 1777) regarding the equation

Uxy+ aux + buy + cu + d = 0,

where a, b, c, d are functions of x and y, and the more general theory of
DARBOUXfrom 1870 are the most beautiful contibutions to that branch of
mathematics.

However, partial differential equations appear not only in theoretical but
also in practical problems of Physics and Engineering, which do not require
gen~ral solutions, but rather those which also satisfy some additional condi-
tions (boundary, initial, mixed), i.e., in practical problems one must solve
Problem 2, and not Problem 1. In the theory of ordinary differential equa-
tions one can. as a rule. easily obtain the reQuired particular solution star-
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ting with the general solution. D' ALEMBERTalso found no difficulty in deter-
mining, starting with (1), the particular solution which satisfies the initial
conditions

u (x, 0) = A (x), Uy(x,O)=B(x)
in the form

(3)
x+ay

u(x, y)=~(A(x+ay)+A(x-ay))+~ J B(t)dt.
2 2a

x-ay

These two facts have led mathematicians of the 18th and 19th century
to concentrate on solving Problem I, hoping that the solution of Problem 2
can be easily obtained from the solution of Problem I, as was done by
d' ALEMBERTin the case of equation (2). This approach. has only partially
met with success. LAGRANGE succeeded in reducing Problem 1 for partial
differential equations of first order to ordinary differential equations, but for
partial differential equations of higher order we still do not possess general
methods of integration. In fact, not only do we not know the general met-
hods for determining the solution of Problem 1, but even if we know ;ts
solution we cannot, in general, use it to arrive at the solution of Problem 2.
For example. though we know that the general solution of the LAPLACE
equation

(4) uxx + Uyy= 0,

is given by

(5) u(x, y) = f(x+ iy)+ g(x-iy),

still, using (5) we cannot solve, without further investigation, the main pro.
blems which depend on equation (4), as, for instance, the problem of electrical
distribution.

For all those reasons in the second half of the 19th and in the 20th
century the theory of partial differential equations has almost abandoned the
general solutions. J. HADAMARDin his book [1] states that the equation by
itself is undetermined until some supplementary conditions are added to it,
when it becomes "determined". In the French Encyclopaedia [2] he says:...
dans l' etude des equations aux derivees partielles, plus encore que dans celle des
equations difjerentielles ordinaires, on doit cesser de rechercher, comme Ie vou-
lait l'Analyse classique, l'integrale generale, c'est-a-dire une expression satisfai-
sant forcement a l'equation donnee E et susceptible, grace aux elements arbitraires
qu'elle contient (constants ou fonctions), de representer n'importe quelle solution
de cette equation. This opinion, given by such an authority, confirmed even
more mathematicians in their disdain of general solutions.

However, though the "old" approach to partial differential equations
was never completely abandoned (we mention, for example, DRACH'Slogic integra-
tion [3], [4], developed by G. HEILBRONN[5], [6]), only the newer times bring
almost complete renaissance of the classic approaches to partial differential
equations. So, for instance, referring to general solutions, which have been
proclaimed useless for applied sciences, the applied mathematician W. F. AMES
in his excellent book [7] says: A knowledge of these general solutions is extre-
mely important in the process of obtaininf( approximate solutions as well as acting
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as a guide to analytic methods. He believes that the natural sciences wilJ
increase the interest in general solutions: There is little mathematical interest
in this area today, but hopefully the pressure from science and engineering will
breathe new life with the subject... Furthermore, AMES states on page 49
that in the theory of nonlinear partial differential equations the method of
general solutions has proved more useful than the special methods, and later
(page 180) he gives an example which shows how general solution can be
used to generate the required particular solution, saying with some bitterness
The utility of this method received little recognition.

Having in front of us those two, quite opposite opinions - the opinion
of the great mathematician J. HADAMARDfrom 1923, which states that gene-
ral solutions are not useful for practical problems, and a contemporary opinion
from 1965 given by an applied mathematician that general solutions are
often more useful, one once again comes to the old conclusion that abandoning
a method a priori is absurd, that every approach has its place both in theory
and applications, and that the difference between the so-called "classical" and
"modern" mathematics is not so sharp.

This work is mainly devoted to the problems of finite integration of
partial differential equations. It exploits an algebraic (in a way "modern")
method for solving a ("classical") problem of Analysis.

We introduce an operator A defined on a set of differentiable functions
by the following axioms:

A (h + f2) = Ah + Af2 ,
A (hf2) =hAf2 + f2Ah,

A (h (/2) = h' Af2'

We then show that this operator is isomorphic with the ordinary deri-
vative and we explain the transition from a solution of an ordinary differen-
tial equation to the corresponding solution of an equation which involves the
operator A.

In the first chapter a special case of operator A, the expression

f(x, y)~+g(x, y) ~ is applied to partial differential equations, especially to
Ox oy

linear equations of parabolic type. Application of operator A shows a com-
plete analogy of a class of partial differential equations of parabolic type
with ordinary linear differential equations, which at the same time explains
why that class of parabolic equations can be reduced to ordinary differential
equations. Moreover, we have shown (Chapter 2) how one can obtain, starting
with the general solution of a partial differential equation of parabolic type
(which has been obtained by the above method), the particular solution
satisfying the given CAUCHY'Sinitial conditions. In other words, it appears
that general solutions are not always useless, since they yield the required
particular solutions.

.
In the theory of nonanalytical functions (which we consider in the third

Chapter) one interpretation of operator A has been introduced long time ago.
Independently from each other, some special cases of operator A have been
defined and examined by G. V. KOLOSOY, D. POMPEIU, E. R. HEDRICK.
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I. N. VEKUA, A. BILIMOVICand others. The general operator A serves howe-
ver to give a better classification of nonanalytic functions, especially to bring
out various analogies of that theory with the theory of analytic functions.

Using a special class of nonanalytic functions, called c-analytic functions
we have generalised GoURSAT'S theorem which states that real and imaginary
parts of a complex function of the form 1 (z) +zg (z), where 1 and g are

l ' f '
.

fh
. A 0

.
h A iJ2 iJ2

ana ytIc unctIons, satls y t e equatlOn LJ.2U= , Wit LJ.= - + -. In fact, weiJx2 iJ y2

have proved that real and imaginary parts of a complex function of the form

n-t

L: (/k (z) zk + gk(Z)zk)
k=O

where 10,... ,/""-t are analytic and go,"" gn-t are c-analytic functions,
satisfy the equation Anu= O. For another class of nonanalytic functions, also
introduced here, we have proved a theorem analogous to CAUCHY'S theorem
on the integral over a closed curve. At the end of the third Chapter we give
an interesting application of nonanalytic functions. Namely, in 1777 LAPLACE
has proved that if the coefficients of the hyperbolic equation

(6) uXy+aux+bull+cu=O

satisfy one of the following conditions

or

then one can obtain the general solution of (6) in a finite form. MOle than
100 years later, P. BURGATTI proved in 1895 the same result for elliptic
equations

(7) Uxx + uY1/ + aux+ buy+ cu= O.

whose coefficients satisfy

1 1 a2+!J2
-ax+-by+--c=O and ay-bx=O.
224

Applying the complex operator to (6), and then to (7), we see that the cited
results are not independent, but rather that they follow from each other.

The fourth Chapter is devoted to systems of partial differential equations.
Among other things, we have determined the solutions of the following
systems

A (x, y) ux-B(x, y) vy=at (x, y)u-a2 (x, y) v+bt (x, y),

A (x, y) Vx+ B(x, y) Uy=a2 (x, y) u+ at (x, y) v+ b2(x, y),

alux + a2uy-bl vx-b2vy = lu- gv + ht,

btux+ b2uy + alvx+ a2vy=gu+ Iv+ h2,

(PI-I) Ux +P2VX-P2Uy+ (PI + 1) Vy= 0,

P2UX-(PI + 1) vx+ (PI-I) Uy+ P2Vy= O.
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We have alw obtained the solution of POLozIl's system

pUx + qUy- Vy= 0,

if 1!-l-iq is an analytic function.
p + 1+ iq

The solution of the famous system of VEKUA

~-~=~+~+l ~+~=~+~+~

was determined if a = d, b + c = 0, or

B~Bz-BB~z-B2Az+B2Az+ B3B= 0,
where

B=~[a-d+ i(c+b)],
4

A =~[a+ c+ i(b-d)].
4

All the given solutions contain one arbitrary function and one arbitrary
constant.

*
* *
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CONVENTIONS

1. In order to avoid repetition of phrases such as "arbitrary differen-
tiable function" or "arbitrary twice differentiable function", etc., we have
agreed to write "arbitrary function". From the very nature of the expressions
which contain such functions, it can easily be seen what conditions od diffe-
rentiability does the function have to satisfy.

2. When mixed derivatives UZll' wz;, etc. were used, it was always sup-
posed that, e.g., UZlI= ulIz'

3. We have used the letters g. and g(, to denote the sets of all functions
in two variables, and the set of complex functions. In fact, we have supposed
that those functions are differentiable as many times as necessary. .



O. INTRODUCTION

Let F be a set of differentiable functions, depending on one variable,
and let Fl be an other set such that {O, I} C F Ii Fl' We agree to let 0, I
denote respectively the functions x ~ 0, x ~ 1. Let A be a mapping of F into
Fl, such that, for J;, f2 E F, we have

We define the subset

A (J;+!;) = AJ; + Af2'

AJ;f2 = J;A!; + f2AJ;,

AJ; (f2) = It' . Af2'

<I>of F by the following relation

(AI)

(A2)

(A3)

(A 4) <PE <I>~A<p= O.

It can easily be shown that {O, I} C <1>.Indeed, by (AI) we have

AO = A (0 + 0) = AO + AO = 2 AO,

i.e., AO = 0, while, using (A2) we obtain

Al =A(1.1)= IAI + lAI =2AI,

I.e., Al = 0, and hence according to (A4), we see that {O, I} C <1>.
Supose that there exists at least one function X E F, such that AX = 1.
Clearly, then A(X+<p)=I, for any <PE<I>.

Definition 0.1. We shall say that the ordered quadruple (F, A, X, <1» with the
above properties represents a 8-system. The second component of that system
will be called a 8-operator.

Operator An is defined recursively:

Ad=Af

An+tf = A (An/) (n = 1, 2, . . .).

Using (AI)-(A3), we can prove the following formula

Af(fp .., , fn)= i of
Afi.

i=lofi
.(0.1)

Definition 0.2. Relation of the form

J (X, u, Au, . . . , Anu) = 0

8
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is called the operator equation of the 8-system (F, A, X, <1» of order
respect to the unknown function u.

Definition 0.3. A solution of the operator equation is any function
identically satisfies it.

Fundamental theorem. Let

n, with

u which

(0.2) J{X, u, Au, ... , Anu)=O

be an operator equation in the system (F, A, X, <1», and let

(0.3) J{Y, u, Bu,
'"

, Bnu) = 0

be an operator equation of the system (G, B, Y, 'Y). If u=f{X, CPt>... , CPn)is
a solution of (0.2), then u= feY, ~!, . . . , ~n) is a solution of (0.3). Naturally,
cp!' . . . , CPnare arbitrary elements of <1>, and ~!,..., ~n are arbitrary ele-
ments of 'Y.

Proof. Using (0.1) we get

Af{X, cPp . . . , CPn)= I' AX =1', Ad{X, CP!,..., CPn)= AI' =f"AX=f",

and, furthermore,

(0.4) Anf{X, cp!' . . . , CPn)= f(n).

Let u = f (X, cp!, . . . , CPn)be a solution of (0.2). Then

J(X,f, Af,... , AnJ)=O.

However, in virtue of (0.4) we have

(0.5)

But then

J (X, f, 1', . . . , J<n») = O.

(0.6) J (Y, f, 1', . . . , f(n») = 0,

sInce (0.5) and (0.6) are in fact the same identity, and henct:

u=f(Y, ~p ... . ~n)

is a solution of (0.3).

EXAMPLE0.1. Let D be the set of all differentiable functions of one real variable x, and let <;

be the set of all real constants. Then (D, ~, x, C) and (D, x2 ~, -~, C) are two
dx dx x

~-systems.
Since the general solution of the differential equation

y"-3y' +2y=0

(which we consider as an operator equation of th~ first system) is given by
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we conclude that the general solution of the differential equation

x'y" + (2x3-3x') y' + 2y = 0

(which we consider as the operator equation of the seccnd system) is given by

y= C1 e(-l/z)
+ C2 e( - 2Iz).

where in both cases C1 and C2 are arbitrary constants.

1. PARTIAL DIFFERENTIAL EQUATIONS

1.1. Basic concepts

In the theory of partial differential equations we can successfully use
the following operator

f(x, y) ~ + g(x, y) ~
Ox oy

where f and g [are given functions of: x, y. Clearly, (g., f ~ + g ~, <0, <D)Ox oy
is a a-system, where the set <D is described by the general solution of

(1.1) ou ouf(x, y)-+g(x, y)-=O,
Ox Oy

i.e., <D is the set of all functions F (Cl), where Cl(x, y) is some solution of
(1.1), and <0 is any solution of

f(x, y) ou
+ g (x, y) ou

= 1.Ox oy

We shall say that a solution of an n-th order partial differential equa-
tion is general if it contains n arbitrary functions.

1.2. First order partial differential equations

Let the functions Cl and <0 be defined as above. Then the determination
of the general solution of the equation

F (<o(x, y), u, f(x, y)
ou

+ g (x, y) OU)= 0Ox oy

reduces to integration of the ordinary differential equation

(1.2)

(.1.3) F(x, y, y')=O.

In fact, if G (x, y, C) = 0 is the general solution
G(<o(x, y), u, Cl(X, y»)=O is the general solution of (1.2).

We shall give two examples of this method.

of (1.3), then
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EXAMPLE 1.2.1. Equation

du dU
I(x, y) - + g (x, y)

~ = 0(1(x, y) u2 + 0(2(x, y) u + 0(3(x, y)
dX uy

where 0(1' 0(2' 0(3 are some particular s01utions of (1.1), is analogous to RICCATI'S equation

where 0(1' 0(" 0(3 are constants, and can, therefore, be integrated.

So, for example, we can integrate the folJowing equation

du duy -+x --=/1 (X2_y2)U2 +12(X2_y2) u+J; (X2_y2),
dx dy

where II' 12, 13 are arbitrary functions of the given arguments.

EXAMPLE 1.2.2. Equation

(1.4) ( du dU) ( du dU)u=(1ogx) x-+y- +k x-+y- ,
dx dy dx dy

where k is an arbitrary function, is ana10gous to CLAlRAUT'S equation

(1.5) y= xy' + k (y'),

and since y=Cx+k(C) is the general solution of (1.5), we have thaI

U (x, y) = I( ; ) 10g x + k (I (; ))

is the genera1 solution of (1.4). Besides, starting with the singular solution y=/{x) of (1.5).
we obtain the singular solution u=/(log x) of (1.4).

For instance, equation

( du dU) ( du dU)
2

u= x -+y- logx+ x-+y-
dx dy dx dy

has the fo11owinggeneral s01ution

and the fo11owingsingular s01ution

10g2x
U=--.

4

1.3. Second order equations of parabolic type

The operator equation

Az u + F (X) Au + G (X) u = 0,
with

d d
A=f(x, y)-+g(x, y)-,

dx dy
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becomes
(1.6) 02U 02U 02U

(

of of
(

)

OUf2-+2fg-+g2_+ f-+g-+F w(x, y»)f -
ox2 oxoy or ox oy ox

+
(

fOg
+ g

og
+ F(w (x, y)g)

au
+ G (w (x, y») u= o.

ox oy oy

Therefore, partial differential equation (1.6) reduces to the ordinary

differentialequation

(1.7) y"+F(x)y'+G(x)y=O

and if C1 F1 (x) + C2F2 (x) is the general solution of (1.7), (Cl' C2 are arbitrary

constants), then C.(O() F1 (w) + C2
(0()F2 (w) is the general solution of (1.6).

In the general theory of parabolic equations (see, for example, [8]) it is

known that (1.6) can be reduced to (1.7), but the procedure is much longer.

The above result can be generalised. Namely, the equation

y"+F1(x, C)y'+G1(x, C)y=O

where C is a constant, is also a linear partial differential equation.

responding partial differential equation is

(1.8) f202u+2fg~+g2o2u+
(

fOf +gof
+F1(w, O()f

)

Au
ox2 oxoy or ox oy ox

The cor-

(

og og
)

au
+ f-+g-+F1(w,0()f --+G1(w, O()u=O.ox oy oy

art.
However, if we suppose that 0( il>not constant, e.g. that -oFO func-

ox '
two functionstions 0(and ware independent. We can therefore always find

F2. and G2, such that

F.(w, oc) = F2 (x, y) and G1 (w, oc)= G2 (x, y),

and equation (1.8) can be written in the following form

(1.9) f2
02U

+2fg~+g2~+
(

fOf
+g

of

+ F2 (x, Y)f
)

au
ox2 oxoy or ox oy ox

+ (

fOg
+g

og
+F2 (x, y)g

)

au
+G2(x, y)u=O,

ox oy oy

where F2 and G2 are arbitrary functions.

Equation (1.9) looks rather special. However, that is not true. In order

to show that we shall start with an arbitrary parabolic equation

(1.10)
02U 02U 02U aU au

f2_+2fg-+g2_+F(x, y)-+G(x, y)-+H(x, y)u=O.
ox2 oxoy or ox oy

Since F2 which appears in (1.9) is arbitrary, we can put

of og
F-f--g-

F -
ox oy

2-
f
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Equation (1.10) then becomes

()2U ()2U ()2U

(
()f ()f

)
()U ()U

J2-+2fg-+g2_+ f-+g-+FJ -+G(x, y)-+H(x, y)u=O.
()x2 ()x()y ()y2 ()x ()y ()x oy

It is well known that a condition for integrability of a parabolic
equation

aUxx+2buxy+cuyy+2dux+2euy+ fu= 0,

i.e. the condition that it may be reduced to CHARPIT'S system of partial
differential equations, is given by

b (2d-
()o

-~
()O

)= a (2e-
ob-~

()b
).

ox 0 oy ()x 0 ()y
(1.11)

In our case we get

( Of ()

~ (
og ()f og g2 ()

0fg Ff-f--g- =/2 G-f--g--g ,
ox ()y ()x ()x ()y f ()y

I.e. .
()g og

G=f-+g-+Fg,()x ()y

from where we see that equations (1.9) and (1.10), together with the condition
(1.11) are equivalent.

This reduces integration of parabolic equation

auxx + 2buxy + CUyy+ 2 dux + 2euy + fu = 0

with condition (1.11) to the problem of integration of ordinary linear differen-
tial equation of second order. Therefore, all the results in the theory of
linear differential equations can be extended to such parabolic equations. So,
for example, we have:

10 The general solution of equation (1.9) is of the from

where C1, C2 are arbitrary functions of ex, and hand fz are two particular
solutions satisfying

dfl

dcu

df2

dcu

20 If one particular solution of (1.9) is known, then we can determine
the general solution of the nonhomogeneous equation
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EXAMPLE 1.3.1. Equation

(1.12)
(x2 + y2) (8x4 + x2 + y2)

16x3
Ux

satisfies the condition (1.11). Let us reduce it to the fOIro (1.9). Dividing by (X2+y2)2 we get

It is now clear that (1.12) should be written as an operator equation in the system

( 1 0 1 0 )g.,
4x ox

+ 4y Oy'
X2+y2, {cp(X2_y2)} .

Equation (1.12) now becomes

1 1 1 ( 1 X ) ( 1 X2 )
x2_y2

- u +-u +-u - -+ u - -+ u + u-o16x2 xx 8xy
xy

16y2
yy

16x' 2 (x2+r)
x 16y3 2Y(X2+y2)

y
(X2+y2)2 - .

i.e.,

(1.13)
1 1 1 [ 1 ( 1 ) 1 ( 2X2

)]-u +-u +- u + - -- -- - U
16x2 xx 8xy

xy
16y2

yy
4x 4x2 4x x2 + y2 x

[ 1 ( 1 ) 1 ( 2X2

)]
x2_y2

+ - -- -- --' u + u=o4y 4y2 4y X2+y2 Y (X2+y2)2
.

Comparing (1.13) with (1.9), we see that

1
f(x,y)=

4x'

1
g(x,y)=

4y'

2X2
F2(x,y)=--,

x2 + y2

x2_y2
G2 (x, y) = (2 2)2 .

X +y

We must now express F2' G2 in the form

Clearly,

u+v
F1(u,v)=--,

u

V
G1 (u, v)=-.

u2

Therefore, the corresponding equation in the system (g., A, X, <1» is

A2u+F1 (X, cp) Au+G1 (X, cp)=O, cpE <1>,
or,
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or. in the system(D. ~, x, c)

(1.14)
x+C C

y"--y'+-y=O,
x x2

where C is a constant. A particular solution of (1.14) is Yl = xc&" and so we can find its
general solution y

= Clxc&' + C2Y2 (x, C), where C1, C 2 are arbitrary constants.

Hence, the general solution of (1.12) is

u= CI (X2_y2) ex2+y2 (X2 + y2)(X2_y2) + C2 (X2_y2) Y2 (x2 + yz, x2_y2),

where Ct, C2 are arbitrary differentiable functions of X2_y2.

EXAMPLE 1.3.2. Equation

log2 (x + y) (y2uxx + 2xyuxy + X'Uyy) + 109 {X + y) (x log (X + y) + yj; (X2_y2» Ux

+Iog (x+ y) (ylog(x+ y) + xiI (X2_y2)) Uy+ 12 (X2_y2) U= O.

is analogous to EULER'S eauation

(1.15)

( 1.16)

where 11>12 are constants. The general solution of (1.16) is given by y = C ,X'< + C 2X[3 , where
IX,~ are different solutions of the equation t2 + (/, -1) t + 12 ~ O. If IX

= ~, then y ~ (C, + C 2 log x) x
presents the general solution of (1.16). Therefore, in the first case the general solution of
(1.15) is given by

CI (x2_y2) [log (x+ yHa(XLy2)+ C 2 (x2_y2) [log (x+ y)][3(xLy2),

where Ct, C2 are arbitrary differentiable functions of x2_y2, and IXand ~, being the solu-
tions of the equation

t2 + [II (x2-y2)-I] t + 12 (x2- y2) =0

also present functions of x2_y2.

If IX=~, the general solution of (1.15) is given by

(CI (X2_y2) + C 2 (X2_y2) log log (x + y)] [log (x+ y)]a (xLy2).

1.4. Nonlinear equations of second order

The exposed method of integration reduces, in the general case, any
partial differential equation of the type

l (c.u, a, f2Uxx+2fguxy+g2Uyy+ (f 01+gOf )Ux+ (fog
+

gOg)Uy' fux + gUy, U)= 0ox oy ox oy

to the ordinary differential equation

lex, C, y", y', y)=O,

where C is a constant.

EXAMPLE 1.4.1. Equation

(1.17)

in the ~-system (g., A, X, <1» where

o 0
A=&'-+eY--,

ox oy X= -rx, <1>={cp(rX-e-y)},
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---.-

becomes

(1.18)

The general solution of (1.18) is

for cp#ol,

forcp=l,

where Ct, C2 are arbitrary elements of III, and hence the general solution of (1.17) is

1
1-",

{

ICte-X+C21 for cp#ol
u(x,y)=

C1ec2e-x for cp= 1

where Cl> C2 are arbitrary differentiable functions of e-!Z-e-lI.

1.5. A remark on equations of higher order

It is natural that the above method can be extended to partial differen-
tial equations of higher order. So, for instance, starting with the linear
differential equation of third order

y'" +F(x)y" +G(x)y' +H(x)y=O,

we can solve the coresponding operator equation

A3u+ F(X)A2u+ G(X)Au+ H(X)u=O,
or, taking

A=f(x, y)~+g(x, y)~,
ox oy

the following partial differential equation

f3uxxx+ 3f2guXXY+ 3fg2UXYy + g3Uyyy+ (3f2
of

+ 3fg
of

+ F/2 )Uxx
ox oy

+(3fg
of

+ 3/2
og

+ 3g2
of

+ 3fg
og

+ 2 Ffg )Uxy + (3fg
og

+ 3g2
og

+ Fg2 )Uyy
ox ox oy oy ox oy

+ (f202f +2fg
02f +g202f+f (

Of

)2+g of of +fogof +gogof
ox2 oxoy oy2 ox oy ox ox oy oy oy

+ Ffof + Fg
of

+ Gf)Ux
ox oy

(
02g o2g 02g

(
Og

)2 of og of og og og
+ f2_+2fg-+g2_+g - +f--+g--+f--

ox2 oxoy oy2 oy ox ox oyox oxoy
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For example, if I(x, y)=x, g(x, y)=y, we get

+(3y2+ Fy2)~+(X+ Fx+ Gx) Uz+(y+ Fy+Gy)ull +Hu={J.

If F, G, H are constants, this equation becomes

( 1.19)
x3u=z + 3 x2YU=1I + 3 xy2UZ!l!l+ y3U!l!l!l+ aX2uxx + 2 aXYUzll

+ ay2u1l1l + bxux + bYUIl + cu = O.

Its general solution is

(1.20)
3

)
3

u(x, y) = L: Ii (L. etilogx = L: xti Ii (L. )
i=l

x i=l x

where it, 12,13 are arbitrary differentiable functions of L., and 11=1=12=1=13=1=tl
x

are roots of the equation

13+(a-3) 12+ (b-a+ 2) 1+ c= O.

If F, G, H are functions of L., then (1.20) again presents the solution
x

of (1.19), but in this case t1> 12, 13 are also functions of L..
x

1.6. Further generalisations

The quoted method can be extended to partial differential equatIOns
which involve a function in several variables, u (Xl' . . . ,x..), since

is also 8-operator.

2. CAUCHY'S PROBLEM FOR PARTIAL DIFFERENTIAL EQUATION~

Up to now we have only been concerned with determination of general
solutions of partial differential equations which can be written in the form of
an operator equation. We shall now show how CAUCHY'S solution of such
equations can also be obtained.

Let J (x, y, y') = 0 be an ordinary differential equation, whose general
solution is given by A (x, y, C) = 0, where C is an arbitrary constant. Suppose
that the equation

(2.1)

2 PubIikacije Elektrotehni~kog fakulteta
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where xo, Yo are given numbers can be solved with respect to C. i.e.. that
(2.1) implies

(2.2)

Then, CAUCHY'Ssolution of the above equation is given by

A (x, y, <I>(xo, Yo»=0.

The equation which corresponds to the above
(g" A, X, <1» is

(2.3)

equation in the system

J (<u(x, y), u, Au) = o.

Its general solution is

(2.4) A(<u(x,y), u, <p(O(x, y»)=o,

where <pis an arbitrary function. We shall look, however, for the
(2.4) which is such that when y=/(x), u=O(x), i.e., such that

u (x, I(x» = O(x).

Let F be a function such that

solution of

<u(x, l(x»=F(O(x, I(x»).

If ~(x)=O(x, I(x» has its inverse function ~-1, then

Let us now determine the function 0/ such that

We obtain
o (x) = 01 (0((x, I(x»).

01 (t) = 0 (~-1 (t».

(2.5)

All we need is to solve with respect to <p(0()

A(F(O(), 01 (O(), <p(O(»=0.

In virtue of (2.2), from (2.5) we get

<p(O()=<I>(F(O(),OI(O(»'

the following equation

and the required CAUCHY'Ssolution is given by

. EXAMPLE 2.1. Tho:: general solution of

(2.6) xy' -y = 2x2yy'

is given by

(2.7) y=xy2+CX.
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~ CAUCHY'S integral, i.e., the solution satisfying Yo = Y (xo) where Xo, Yo are given
numbers, can be obtained if we put

c =
yo-xoyo2

Xo

Consider the equation

(2.8) log x (2u log x-I) (xux-YUy) +u=O.

Its solution with an arbitrary function is

u = log X [u2 + f(xy»).

We require to find that solution of (2.8) which contains the curve y=x2, u=x'.
Applying the above procedure, we get

1
logx=F(x3), i.e., F(t)=-Iogt,

3

and therefore

1
ex-- ex210gex

3f(ex) = 1
-log ex
3

which means that the required solution is given by

[

3XY-X2y210gXY

]
u(x,y)~logx u2+ .

logxy

EXAMPLE2.2. The general solution of CLAIRAUT'S equation

(2.9) y=xy'_y'2

is

where C is an arbitrary constant. In this case CAUCHY'S problem is not correctly set, since
if xo2#4yo, we have two integral curves passing through each point (xo, yo>. Those two
curves are obtain::d if we put

(2.10)

We require to find those in1egral surfaces of the equation

(2.11 )

15
which contain the curve y ~ x, u = -- .

4x2
The gen~ral solution of equation (2.11) is given by

u(x,y)~ ~f(~-+7)-[fC + ~)J.
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~- ~

- -

Applying the above procedure, we have

1 (2 ) t
- = F - , i.e., F (t) =-x x 2

15
.e., 01 (t) = -- t2.

16

Therefore. in vlftue of (2.10).

ex (ex215ex2
-:t.V-+-

f(ex) =
2 4 4,

2

i.e. )

Therefore, the following surfaces

u (x, y)=~ (~+~ )~- 25 (~+~ )2,
u (x,y)= -2- (~+~ )~_! (~+~ )

2

4 x y y 16 x y 4 x y y 16 x y

15
satisfy equation (2.11) and contain the curve y = x, u = -- .4x2

A similar method can be applied to equations of higher order. The
case of linear partial differential equations of parabolic type has been discussed
in detail in [9]. We shall only cite the example which was given in that paper.

BXAMPLE2.3. The function u which satisfies the BERTRANDequation

x2uxx + 2 xyuxy + y2Uyy + xux + YUy = n2u

«(I is a constant) and is such that

is given by

1
([

X

](
x )

n-4

[
X

](
x )-n-4 )u(x'Y)=2n (n+3)-y-l -y xn+ (n-3)-y+l. -y x-n.

3. COMPLEX OPERATORS. NONANAL YTIC FUNCTIONS

3.1. Kolosoy's operator D

On the set of complex functions w,

w(z)=u(x, y)+iv(x, y), z=x+ iy,
.
where u and v are differentiable functions, G. V. KOLOSOV[10], [11], [12],
introduced the operator D defined by

ou OV .(OV OU)DW=d~- oy + I
ox

+ oy
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and used it to integrate various systems of partial differential equations which
appear in Mathematical Physics, especially in the Theory of Elasticity. KOLOSOV
first proved in [10] certain formulas which enable him to work with D as if
it were a derivative, and then applied them in [12] using as an inspiration
the corresponding ordinary differential equations. Later on he showed the ge-
neral method of integration, which corresponds to our Fundamental Theorem.

KOLOSOV'Soperator D was rediscovered a number of times. The history
of this problem, with an extensive literature, is given in [13] and [14].

In fact, it is not difficult to show that D is a ~-operator. The corres~
ponding ~-system is (~, D, z/2, {f(z)}}, where f are arbitrary analytic
functions.

We shall now use an operator analogous to D to obtain an interesting
property of a class of complex functions.

3.2. Generalisation of Goursat's theorem

As a generalisation of the known fact that the real and imaginary parts of
an analytic function f(z)=u(x, y)+iv(x, y) satisfy LAPLACE'Sequation ~u=o,
~ v = 0, we have the following GOURSAT'S theorem (see, for example, [15],
pp. 193-194).

The real and imaginary parts of a bianalytic functions, i.e., a function
of the form

fo (z) + zJ; (z),

where fo and J; are analytic functions, satisfy MAXWELL'S equation ~2U = 0,
~2V=0.

Using the operator D, S. FEMPL [16] has generalised GOURSAT'Stheorem.
He has proved that the real and imaginary parts of an "areolare polynomial",
i.e.. of the function

n-l

2: fk (z) Zk
Ic=O

where fie are analytic functIons, satisfy the equatIOn Llnu=O, Llnv=O. FEMPL
has also proved that the areolare polynomials are the only functions whose
n-th deviation from analyticity is an analytic function. The n-th deviation from
analyticity is defined as Dnw, where D2 = D (D), etc.

In paper [17] we have introduced c-anll-lytic functions as complex func-
tions whose real and imaginary parts satisfy the following system of partial
differential equations:

£!U+~=O Ov_ou=O.
ox oy

,
£Ix oy

. c-analytic functions are in connection with the operator D (also Imrodu-
ced by KOLOSOV):

-D
ou OV .

(.
ov d

.

lI)W=-+-+l --- .
ox oy ox ~y
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Clearly, D is also a a-operator, with the corresponding a-system
(ex, D, z/2, {f(z)}), where fez) are c-analytic function.

We shall say that Dnw is the n-th deviation from c-analyticity (Dn =

=D(Dn-l)' ...).
Notice that the statement "deviation of a function w from analyticity is

an analytic function" is equivalent to "D2w = 0". Similarly, statements "deviation
of a function w from c-analyticity is a c-analytic function" and "D2w = 0"
are equivalent.

Theorem 3.1. Real and imaginary parts, u and v, of a function of the form

(3.1) fo (z) + zit (z)

where fo and It are c-analytic functions, satisfy Laplace's equation, i.e., we
have

~2V=0.

Moreover, functions of the form (3.1) are the only functions whose deviation
from c-analyticity is a c-analytic function.

Proof,o We immediately see that for a function w of the form (3.1) we have

(3.2) D2w= O.

Let us now prove the other parts of the theorem.
Put

Dw=U(x, y)+iV(x, y).

Then, condition (3.2) implies

oU+oV=O oV_oU=O
ox oy

,
ox oy

,

and, as a consequence,

(3.3) ~V=O.

Since

U =
ou

+
OV,

ox oy
v=

ov_ou
ox oy

we have

and by (3.3) we obtain

(3.4)

Similary, ~2V=0.
Let us now prove that functions of the form (3.1) are the only such

functions for which (3.2) holds.

1) This is a correction of the proof given in [17].
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Equation (3.2) separates into the following system

(3.5)
02 U 02 U 02 Y
---=-2~
ox2 oy2 Ox oy

(3.6)
02y 02y 02U

---=-2-.oy2 ox2 oxoy

Start with equation (3.4) whose expanded form is

o'u o'u o'u-+2 -+-=0.
ox' ox2oy2 oy'

The general solution of this equation is (see [18])

(3.7) u(x, y)=/(x+ iy) +yg(x+ iy)+tp(x-iy)+ yHx-iy),

where I, g, tp, Iji are arbitrary differentiable functions.

From (3.5) and (3.7) we get

~= -I" (x + iy) + ig' (x+ iy)-yg" (x+ iy)-tp" (x-iy)oxoy
-ilji' (x-iy)-ylji" (x-iy),

and, integrating with respect to x,

~ = -I' (x+ iy)+ ig(x+ iy)-yg' (x+ iy)-tp' (x-iy)oy
-ilji (x-iy)-ylji' (x-iy)+ F(y),

where F is an arbitrary function.
Integrate now the obtained equation with respect to y. We find

(3.8) v (x, y) = if (x + iy) + iyg(x+ iy)-itp (x-iy)-iylji (x-iy) + 'Y (y) + $ (x),

where $ is an arbitrary differentiable function, and 'Y (y) = JF (y) dy.

In order to determine ct>and 'Y we shall use. besides (3.8), equations (3.6)
and (3.7). The last one becomes

'Y" (y)-$" (x) = o.
This means that

where a, b, c, d, e are arbitrary constants.

Therefore,

$ (x) + 'Y (y)=ax2+bx+c+ay2+dy+e,
I.e. ,

(bZ i - ) ( - bid ) - -$(x)+'Y(y)= -+-dz+c+e +z az+--- =(X(z)+z~(z).. 2 2 2 2
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Function w now becomes

w (z)=u(x, y)+ iv(x, y) =2cp (x-iy)+ 2yIjJ(x-iy) + irx(z) + iz~(z)

= 2cp(z)-izljJ (Z) + irx(Z) + iz~ (z)= fo (z)+zlt (z),

where fo (z) = 2cp(z) + izHZ> + irx(z), .h (z) = -iljJ (z) + i~ (z).
This completes the proof of the above theorem.
Continuing this procedure, we can show that a function of the form

- - -fo (z) + zfl (z) + z2f2(z)

is such that its second deviation from c-analyticity is a c-analytic function,
and that its real and imaginary parts satisfy

~3U=O, ~3V=O.

By the use of an operator which is inverse to D, we can prove a mort:
general result, which is analogous to FEMPL's result on areolare polynomials,
i.e., that a function of the form

n

L: z1fi (z)
;=0

is such that its n-th deviation from c-analyticity IS a c-analytic function,
while its real and imaginary parts, u and v, satisfy the equations

(3.9)

We shall give the most general result related to equations (3.9), which
contains all the previous results.

Lemma 3.1. Let w (z, z) = u (x, y) ~ iv (x, y) be a complex function whose partial
derivatives with respect to z and z are contif!uous. Then

(3.10)

Proof. Let n = 1. Then

(PW 1

(0 . 0 )(OW OW) 1 (02W 02W ) I .
--;::=- -+l- --- =- -+- =-(~U+l~V).
ozoz 4 ox oy ox oy 4 ox2 oy2 4

Suppose that (3.10) holds for some n. Then

02n+2w
-~ (~+ i~ )(~-i~ )~(~nu +i~nv)

ozn+lozn+l 4 ox oy ox oy 22n
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This completes the induction proof.
Corollary.

02nw
---=--=0 if and only if ,,6,nu=O and ,,6,nv=O.
ozn ozn

Theorem 3.2. Complex functions of the form

(3.11)
n-l

~ (z'ft (z) + zigi (z)],
'=0

where ji, gi (i = 0, . . . , n-l) are analYllc, c-unalytic junctions, respectively, and
only those functions, have the property that their real and imaginary parts, u
and v, satisfy

(3.12)

Proof. Conditions (3.12) are equivalent to

(3.13)

However. the general solution of (3.13) is (3.11).

3.3. A generalisation of .Kolosov's operators

KOLOSOV'Soperator D can be generalised as follows: Define an operator
K on the set of complex functions w = u (x, y) + iv (x, y) by

OU ov . ( OV OU)Kw=A--B-+l A-+B-
oX oy ox oy

where A and B are functions of x, y.
Clearly K is a a-operator.
According to the general theory, if f IS any solution of the equation

Kw = 1.
and g a solution of

Kw=O,
then equation

(3.14) J(f, g, w, Kw, ..., Knw) = 0

in the system (g{., K, f, {g}) correspond3 to equation

(3.15) J (x, C, y, y', . . . , y(n»)= 0,

in the syste~ (D, ~, x, C), where C is constant, and. therefore. integration

of equation (3.14) reduces to integration of (3.15).
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3.4. On nonanalytic functions

Nonanalytic functions w can be described by Dw o;t:0. Introducing some
other special conditions, one can define subclasses of the class of non-
analytic functions. So, for example, systems

ou ov ou ov(jl (X)-='t"l (y) -, (j2 (x)-= -'t"2 (y)-,
Ox oy oy Ox

ou 1 ov ou 1 ov, ------
Ox p oy Oy p Ox

ou ou ov ou ou ovp-+q---=O, -q-+p-+-=O,
Ox oy oy Ox oy ox

ou ov ov ou
---=~+~+~ -+-=ro+~+~
Ox oy Ox Oy

where p, q, a, b, c, d, ~ g are functions of x, y subjected to certain conditions
define the so called ~-monogenic, p-analytic, p, q-analytic, and generalised analytic
functions, introduced by L. BERS and A. GELBART [19] and [20] and G. N.
POLOzii [21] and I. N. VEKUA[22]. Their complex forms are

Ow
-

I-p Ow
oz-l+p oz'

(p+ l-iq) o~ + (p-l + iq) o~ = 0,
oz oz
Ow -
-==Aw+Bw+F,
oz

A=~(a+d+ ic-ib), B=~(a-d+ ic+ ib), F=~(f+ ig).
442

More details about nonanalytic functions can be found in papers [13]
and [14].

It is not difficult to show that D = 2 ~, Jj = 2 ~. It is often statedOz oz

h
.

h
0 0 .

f h d " d
.

t at one can operate WIt ---=, - as I t ey were envatlves, an 10 some
oz oz

places even the authors prove some of their basic properties. In fact, 0- and
oz

~ are partial derivatives with respect to z and z, which can be considered
oz
as independent variables. In order to justify this assertion, we cite the follo-
wing facts:
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10 For two real functions u, v: R2 -+ R it is said that they are indepen-
dent if there does not exist a differentiable function q> such that u = q>(v).

It is well known that the necessary and sufficient condition for inde~
pendence of functions u and v is given by

J=
!

Ux UY

!

=lO.
vx vy

Introducing the corresponding definition of independent functions u, v:
R2 -+ C, we see that the condition of independence remains unchanged.

Consider now the functions

U(x, y)=x+ iy, v (x, y)=x-iy.
We have

~

1

=-2i=lO,
-I

and according to the above definition they are independent.
20 From RIEMANN'Sformula for the complex derivative (see [23])

dw 1
[

OU OV .(OV OU

)]
1

[
OU OV .(OV OU

)J
- 2'm-=- -+-+1 --- +- ---+1 -+- e 'y

dz 2 Ox oy ox oy 2 ox oy Ox oy

where dz = eet'P; multiplying by dz, we obtain the expression which is analo-
gous to the complete differential of a real function of two variables, namely
(see [24])

J=I
~

ow ow-
dw=- dz+-=dz.

oz oz

This way of thinking enables us to classify complex functions in the
following way:

A complex function, which has derivatives with respect to z and z, can
be considered as a solution of a partial differential equation.

So for example analytic functions present the solution of the simplest

partial differential equation o~ = O. Another class of complex functions, asoz
simple as the class of analytic functions, is the class of c-analytic functions,

defined by
ow

= O.
oZ.

A number of other special classes of nonanalytic functions are determi-
ned in [25] and [26].

3.5. Functions which are analytic in the sense of operator K

A natural generalisation of analytic and c-analytic functions present
functions which are analytic in the sense of operator K. They are the functions
w(z, Z)= U(x, y) + iv (x, y) whose real and imaginary parts satisfy the follo-
wing system.

OU OV OV ou
A (x, y)

ox
-B(x, y)

oy =0, A (x, y)
ox

+B(x, Y)~;=O,

where A and B are given functions.
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Putting A = B, we get the class of analytic functions, while for A = - B,
we get the class of c-analytic functions.

Multiplying the second equation of the above system by i, and adding
it to the first, we get

(3.16)
ow ow

(A+B)--=+ (A-B)-= O.
oZ oz

Since (3.16) is a linear homogenoeus partial diffelential equation, it can
always be reduced to an ordinary differential equation, so that we can then
determine the classes of functions which are analytic in the sense of opelator K.

For example, if A and B are constants, the corresponding functions
which are analytic in the sense of operator K have the form

f«A-B) i--r(A + B) z).

3.6. Two properties of compound analytic functions

c-analytic functions, the simplest nonanalytic functions, are obtained
from analytic functions by a formal substitution of z for z.

A much more general class of nonanalytic functions is obtained by a formal
substitution of h (z, z) for z, where h is a complex function.

Let h (x, y) = C be the general solution of the differential equation
y' =

g (x, y).
Then h satisfies the following equation

f(x, y)

(3.17) - ow - owfez, z)-+g(z, z)--==o.
oz oz

The general solution of (3.17) is

w = F(h (z, z»),

where F is an arbitrary differentiable function.

Complex function w given by (3.17) need not be an analytic function.
Such functions we shall call compound analytic functions.

. We shall give two theorems for such functions, which are analogous to
the corresponding theorems which hold for analytic functions.

Theorem 3.3. If w is a compound analytic function in a simply connected
region R,and if C is a closed contour lying entirely inside R, then

Jw(z, z)dh=O.
c

Proof. Let fez, z}=fr(x, y)+ if2 (x, y), and g(z, Z)=gtCx, y)+ig2(x, y}.
Equation (3.17) can be written in the form

(fr + if2) (ux+ Vy+ i(vx-uy») + (gl +igz) (U;t-VII + i(vx +Uy») = 0,
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and it separates into the system

(3.18)
(1;. + gl) Uz+ (h.-g2) Uy-(f2 + g2) Vz+ (1;.-gl) Vy= 0,

(f2 + g2) Uz-(1;. - gl) Uy+ (1;. + gl) Vz+ (f2-g2) Vy= 0
Put

(3.19)

Then

I I
,

(Oh oh -)wdh= (u+ IV)
oZ

dz+
OZ

dz

c c

1
I(

,

)[(
Oh, oh2

" (Oh2 i>h'
)](d

.

'd )=- U+IV -+-+1 --- X+l Y2 ox oy iJx i>y
c

[
iJhl oh2

' (iJh2
+

iJh,
)] (d .d »)+ ---+1 - - X-lY

iJx iJy iJx iJy

I .
[(

iJh iJh
)

.(Oh oh
)]= (U+IV) -"dx+~dy +1 ~dx+~ dy

ox oy ox oy
c

I oh,
d iJh,

d
iJh2

d oh2
d= u- x+u- y-v- x-v- y

iJx oy ox yiJ
c

,

J
iJh oh oh oh

+ 1 V -" dx + V-" dy + U~ dx + U~ dy
iJx iJy ox oy

c

I ( iJh, iJh2)d ( iJh, iJh2)d= U --v- x+ u--v- Y
iJx ox oy iJy

c

. I( oh iJh ) ( oh iJh )+1 v-2..+u~ dx+ v-"+u~ dy
ox ox oy iJy

c

= J r [~ (u iJh,_v 0 h2)_~ (u iJh,-
V

Oh2

)] dx dy. ox iJy iJy iJy iJx iJx

.
JJ[

0 ( iJh, iJh2) 0 ( oh, iJh2
)]d d+1 - V-+U- -- V-+U- x y

iJx oy oy iJy ox ox

=Jr(OU iJh,- OV iJh2- iJu iJh,
+

OV Oh2)dxdy. iJx oy iJx iJy oy iJx oy ox

+ i JJ (iJVoh,
+

iJu iJh2- OVoh,~ OUiJh2)dxdy
ox iJy ox iJy iJy ox oy ox

=Pl + iP2

where the double integrals are taken over the surface bounded by C. Let us
determine the first one. Since wand h satisfy (3.17), i.e., since their real and
imaginary parts ~atisfy the system (3.18), using notations (3.19) we get
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PI = JJ (i>Ui>hl
+

(ab-ed) ux+(b2 +d2) Uy (a2+ e2)hlX + (ab-ed) hi

ih i>y be+ad be+ad

-
i>u i>hl- (a2 + e2) ux+ (ab-ed) Uy (ab-ed)h,x+(b2 +d2)hl )dx dy
i>y i>x be+ad be+ad

= JJ (i>Ui>hl- i>u i>h,
+

(b2 +d2) (a2+ e2)-(ab-ed)2 i>u i>hl

ox i>y i>y i>x (be + ad)2 i>y i>x

(ab-ed)2 (a2 + e2) (b2 + d2) i>u i>hi )d d+- -- x y.
(be + ad)2 ox i>y

Similarly, we can prove that Pz = 0, which completes the proof of this
theorem.

Theorem 3.4. If we know the real part of a compound analytic function
w (z, z) = u (x, y) + iv (x, y), then we can determine its imaginary part up to
a constant.

Proof. Let u be known, Solving (3.18) with respect to Vx and Vy, and
using (3.19), we get

(a2 + e2) Ux + (ab-ed) Uy
v=-y

be+ad'

Now

dv=
(ab-ed)ux+(b2+d2) Uy dx--~~-t:e2)!!x+(ab-ed)uy dy.

k+ad k+ad

This expression is a complete differential, which means that v can be
determined up to a constant.

Remark. Notice that functions which are analytic in the sense of operator K are a special
case of compound analytic functions.

3.7. Invariants of hyperbolic and elliptic partial differential equations

U
.

h ' I d "
i> i>

,

slOg t e parha envahves -=, - we can connect two Important re-
oz i>z

suits of LAPLACE(published in 1777) and BURGATTI(published in 1895). See
[27] and [28]. Namely, LAPLACE has proved that if one of the conditions

ax+ab-c=O, by+ab-c=O

is satisfied, then the hyperbolic equation

uXy+aux+buy+cu= 0

can be integrated, i.e., one can find its general solution. BURGATTIhas proved
that if

1 1 A2 + B2
-A +-B +~-C=O and Ay-Bx=O,
2

x
2

y
4

then the equation

uxx+ uyy+Aux+Buy+ C= 0
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can also be integrated. These two results follow, in fact, from each other.
The proof of this can be found in [29].

4. SYSTEMSOF PARTIAL DIFFERENTIAL EQUATIONS

Definition 4.1. We shall say that a system of k partial differential
with k unknown functions is of type k x k.

equations

4.1. Systems of type 2 x 2 - application of a real operator

The method considered in 2. can be extended and applied to systems of
partial differential equations. We shall illustrate the method by the systems
of the form

OU OU
f{x, y)-+ g{x, y) - = a (oc)u+ b (oc) v,

ox oy

ov ov
f(x, y)-+g(x, y) -=c(oc)u+d(oc)v,

ox oy

where oc(x, y) has the same meaning as in 1.1.
In the system (9, A, X, <1» thi3 system of equations reads

Au=au+bv, Av=cu+dv, (a, b, c, dE <1»(4.1)

where
o 0

A=I -+g-.
ox oy

We shall look for the solution in the form

u= Aerx, v= !lerx.
Then

AU=ArerX, AV=!lrerx,

and sub3tituting into (4.l) we get

(a-r)A+b!l=O, cA+(d-r)!l=O.

(4.2) will have nontrivial solutions in A, !l only if

b

1

-0
d-r

- ,

from where we get two values for r (we suppose that rloI=r2)' Putting each of
those values into (4.2) we get 11.1,11.2,!lI' !l2'

General solution of the system (4.1) is then

u = CI Aler,x + C2A2er2X, v = CI!l1er,x + C2 !l2er2X,

where CI, C2 are arbitrary elements of the set <1>.

For example, consider the system

(4.2)

Algebraic system

Ou ou
yox + x Oy= J;

(XL_y2) U + f2 (X2_y2) V,

Ov Ov
y- +x -= 13 (x2_y2) U+ 14 (X2_y2) V.

OX ()y
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We have
X =log (x+ y),

and, therefore, its general solution is given by

u(x, y) = Ct (X2_y2) Al (X2_y2) (x + y)': (xLy2)

+ C2 (X2_y2) A2(X2-y2) (x +Y)'2(xLy2),

v (x, y)=CI (X2_y2) ILl(X2_y2) (x+ y)'I(XLy2)

+ C2 (X2- y2) IL2(X2-y2) (x + Y)'2
(xLy2),

where A" !Li, rj (i = I, 2) are determined in the same way as above (they are
now functions of x2_y2), and CI, C2 are functions of the same argument.

4.2. Systems of type 2 x 2 - application of complex operators

We have already stated that KOLOSOVused his operator D for inte-
gration of systems of partial differential equations. So, for example, (see [12])
system

(4.3) au av
---=x,i)x ay

au av
-+-=x-y.ay ax

after multiplying the second equation by i, and adding it to the first, KOLO-
SOYwrites in the form

(4.4) iz ( i )-
Dw=-+ 1+- z,

2 2.

whereform, by analogy with ordinary differential equation

y' =Ct + C2x,
whose solution is

(C3 is an arbitrary constant), he obtains a solution of (4.4) in the form of

(4.5) izz 1 ( i )-
w=-+- 1 +- Z2+cp(Z)

4 4 2

where cP IS an arbitrary analytic function. Separating the real and imaginary
parts of (4.5) we finally get

1
u (x, y) = -

(X2_y2 + xy) + CPt(x, y)
4

(4.6)
311

v (x, y)=-X2+- y2_-XY+CP2 (x, y),
882

where CPt,CP2are such that CPI+ iCP2is an analytic function.
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Solution (4.6) is not the general solution of the system (4.3), as it
does not contain two arbitrary functions. Namely, given the function rpl, the
other function rp2 can be determined, up to a constant. Solution (4.6) depends,
therefore, on an arbitrary function and an arbitrary constant.

Definition 4.2. A solution of an n-th order system of partial differential equations

( 0 U 0 U 0 v 0 v , . . . ,
onV

)-- 0,FI X, y, u, v" ,
ox oy' ox oy Oyn

F2 (X, y, u, v, ~!!.,
OU ~ oV,..., onv

)= 0
ox oy' ox' oy oyn

will be called (X-solution, if it contains n arbitrary functions and n arbitrary
constants.

System (4.3) is naturally only an example for this method of integration.
More generally, any system of the form

(4.7)
OU ov
---= f( x Y u V)
oX oy ""

OU ov
-+-=g(x, y, u, v),
oy ox

where u and v are the unknown functions of X, y, and where f and g are
given functions, under the condition

(4.8) f(x, y, u, v)+ig(x, y, u, v)=F(z, z, w),

reduces to an ordinary differential equation

(4.9) y' = F(C, X, y),

where C is a parameter.
If

is the general solution of equation (4.9) (CI is the constant of integration),
then the (X-solution of (4.7) is given by

where rp is an arbitrary analytic function.

Remark. System (4.7) can always be written in the form

(z+~ z-~ w+w w-w ) (z+z z-z w+wDw = f
-Z' "2i' ---Y-' 2i

-
+ ig 2

-,
"2i' ---Y-'

w-"W )2i

=F(z, z, w, W),

qut that equation is not an operator equation in the sense of Definition 0.2. Condition
(4.8) is therefore necessary for this method of integration.

3 PubIikacije Elektrotehnickog faku1teta
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Various special cases of (4.7) are considered in papers [30], [31], [32].
For example, the following systems are solved:

OU ov
(

W

)---=Ref z, -:::-,
ox oy z

Ov ou
(

W

)-+-= Imf z, -=- ,
ox oy z

and
OU OV f -

= Re [ (z, z) g (z, w)],

ox oy
ov OU -
-+-= 1m [f(z, z) g(z, w)],
ox oy

etc., where the main idea Was to reduce the integration of these systems to
ordinary differential equations, whose solutions can be easily obtained.

Some more complicated system:> were also solved, as for example
(see [33]):

u=xP+ yQ + Re [f(P+ iQ)], v= xQ-yP+ 1m [f(P+ iQ)],

where f i8 a given function and

2P=ux-vll'

The above system reduces to CLAIRAUT'sdifferential equation. In papers [34],
[35], [26] some systems of second order were considered.

All these results are only technical realisations of KOLOSOY'sidea.

Since the operator D is also a a-operator, one can also obtain solutions
of analogous systems of partial differential equations, i.e., of those systems,
whose complex form is an operator equation involving D.

Applying the operators K, K one can solve systems which are more
general than those solvable by KOLOSOY'Soperators. Of course, we must
always suppose that we know the solutions of the following two systems:

Aou-B~=O, Aov+Bou=O
ox oy ox oy

(4.10)

and

(4.11 )

It was already shown (see 3.5) that (4.10) can always be written in
the form

Ow ow(A+B) =+(A-B) -=0.
Oz oz

In the same way, (4.11) can be written as follows:

Ow ow 1(A+B)---= + (A-B) -=-.
Oz oz 2

Since (4.10) and (4.11) are linear eq uatioll3, their integration reduces
to ordinary differential equations. In this way, integration od systems of
partial differential equations, whose complex form is an operator equation in
K, is reduced to integration of three ordinary differential equations.
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For example, system

i)u i)v
A--B-=a(x, y)u-b(x, y)v+c(x, y),

i)x i)y

ov i)u
A-+B-=b(x, y)u+a(x, y)v+d(x, y),

i)x i)y

has the following complex form

Kw=Fw+G,

where F(z, z)=a+ib, G(z, z)=c+id.
As we have mentioned earlier, KOLOSOV'S

lowing equalities
operator D, D satisfy the fol-

i) - i)
D=2-=, D=2-.

i)z oz

Up to now we have considered only those operator equations which involve

D or D (i.e., 0-, or ~ ). In fact, we can consider equations which contain
i)z i)z

both operators, or even more generally, which contain the expressions

i) i) i)2 02 02

o Z ();.' 0 Z2'
. . ., --=..:, -,

oz i)z OZ2

In this way we obtain solutiom of far more general systems of partial
differential equations. In fact, we come to the following conclusion:

Every partial differential equation which contains a function in two variables
corresponds to a system of two partial differential equations containing two
unknown functions in two variables. If one knows the general solution of the
partial differential equation, one also knows the rx-solution of the corresponding
systems, and vice versa.

We shall ill ustrate this by two examples.

EXAMPLE 4.2.1. System

all (x, y) Uz+ a'2 (x, y) uy-bll (x, y) VZ-b'2 (x, Y)Vy ~ I(x, y) u-g (x, y) v + h, (x, y),

bll (x, y) Uz + bI2 (x, y) Uy + al1 (x, y) Vz +a'2
(x, y) Vy =g (x, y) U + I (x, y) v + h2 (x, y)

can b~ reduced to the form

(4.12) -
ow - ow - --A (z, z)-= +B(z, z) --,~ C (z, z) w+D(z, z),
i)z i)z

where

1 1
C ~

2
(f + ig), D ~

2
(h, + ih2).

3*
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However, the following system of ordinary differential equations

(4.13)
dz dz

A B
dw

Cw+D-=-=

corresponds to (4.12), and knowing the solution of (4.13)
of (4.12).

Let, for example, A=-z, B~2z, C=2, D=O.
Then the general solution of (4.12) is

w = zl(zz2),

we can arrive at the solution

and therefore the <x-solution of the corresponding system

(4.14)

OU ou ov OV
x-+y--3y- +3x--=4u

oxoy ox oy
,

ou ou ov OV
3y--3x-+x-+y-=4v

ox oy ox oy
is given by

(4.15)
U(x, y) ~ xii (x, y)- yl2 (x, y),

V(x, y) = yll (x, y) + xl2 (x, y)

where It +if2 is an arbitrary compound analytic function, with h(z, i)=zZ2. Therefore, ac-
cording to Theorem 3.5, (4.15) presents the <x-solution of (4.14).

4.3. Other types of systems

In using complex operators we have reduced systems of partial differen-
tial equations of first order to one partial differential equation of the form

(4.16)
(

-OW OW
)

F z, z, w, -, -= = O.

oZ oz

However, as we have mentioned earlier, we cannot reduce every system
to (4.16). In fact, starting with an arbitrary first order system of partial
differential equations, we can replace it by

F (Z, Z, w, w, ow, o~, ow, O~
)

=O.
oZ oz oz oz

Equations of the form (4.17) cannot be integrated by analogy with real
partial differential equations. Nevertheless, in some cases their solutions can be
determined.

(4.17)

4.3.1. A system analogous to PoloiiI's p-system

POLOZII's p-sistem of partial differential equations reads

OU 1 OV
-=--,
ox p oy

OU 1 OV
oy = --; Ox'
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where P is a given, positive and differentiable, function of x, y.' Its' complex
form is

ow - ow
~=P(z, z)-=
oz oz

where
- p-lP(z, z)=-.

p+l

P (z, z) is clearly a real function. Suppose, however, that it is afomplex,
analytic function. We then get

.o:! , i'JI':.'

(4. I 8)

We shall treat equation (4.18) as an undetermined partial differential
equation.

Put w=g(z, z)=gJ+ig2, where g is a- I!:rbitrary differpntil'lhle function.
Equation (4.18) becomes

and this new equation can be integrated:

J
og - Jog - -

w= P(z)~dz=P(z) -=dz=ex(z)+P(z)g(z, z).
oz oz .

However, we have

Rew=Rew, 1m w = - 1mw,
and'therefore

Re (ex+ Pg)= Reg, 1m (ex+Pg)=-Img,
I.e. ,

If PI2+ pi- I #0, this algebraic system always has cnlutions in gJ, g2,
and they are given by

01:, + 01:1PI + 0I:2P2

PI2+p/-l '

Therefore, the general solution of (4.18) is given by w=.~I-:-ig2, and
the ex-solution of the system corresponding

(PI -:-I) UX + P2 VX-P2Uy + (PI + 1) Vy= 0,

P2UZ-(P1 + l)vx+(PI-I)uy+P2vy=0,
by

U(x, y) =
01:1 + 0I:1PI + 0I:2P2

P12+p/-l '
V(x,y)= 0I:2-0I:2P, +0I:.P2

Pl2 + P22-1
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ExAMPLE 4.3.1.1. System

(4.19)
(x-1)u", + YV",-YUy +(x+ 1)vy=O,

YU",-(x+ 1)
v'"

+(x-l)uy+ YVy =0

has the following complex form

ow ow
-=z-oz oz'

Putting w=g(z, z)=g, +ig2Owe get

W=IX(Z)+Zg(Z, z),

where IX= IX,+ iIX1 is an arbitrary analytic function.
However, w=g,-ig1, and therefore,

IX, + XIX, + YIX1

x1 + y1-l '

which means that the IX-solution of (4.19) is given by

u(x, y)=glo V(x, y)=-g1'

4.3.2. PoloziI's p, q-system

As a generalisation
[38]) the system

(4.20)

of his p-system, POLOZII introduced (see [36], [37],

where p, q are given differentiable functions of x, y with p>O.
defines the class of (p, q) - analytic functions.

Its complex form is

System (4.20)

(4.21)

Applying the same method as before, we see that it is possible to deter-
mine the ex-solution of (4.20) if

p-1-I:q
- p (z)

p + 1-lq
is an analytic function.

Indeed, putting

w=g (z, Z)=gl (x, y) + ig2 (x, y).

where g is a differentiable complex function, equation (4.21) becomes

ow og
--= +

p (z) ---= = 0,
oz oz
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wherefrom we get

J
og - Jog - .-

w= ex(z)- P(z) --= dz= ex(z)-P (z) ---=dz= ex(z)-P(z) g(z, z),
oz oz

where ex= ex}+ iex2 is an arbitrary analytic function. However,

I.e. ,

which gives the following algebraic system for g}, g2:

Solving this system, we get

[(p2 + 1)2 + q2] [(p' + p2 + 2)a.1 + 2qa.2]
g}=

(p' + 3p2 + 2q2) (p' + p2 + 2)-4q2

[(p2 + 1)2 +q2] [(p' + 3p2 +2q2) a.2 + 2qa.l]

(p' + 3 p2 + 2 q2) (p' + p2 + 2)-4q2

which gives the ex-solution of (4.20) in the form

EXAMPLE 4.3.2.1. System

(4.22)

has the following complex form

OW z-low
-+--=0oz z+1 oz

.

Since (z-I)/(z + 1) is an analytic function, we obtain the a.-solution of (4.22) in
the form

[(x2 + 1)2+ y2J[(X' +x2 + 2)a.\-2ya.2]
u (x, y) = (x' + 3x2 + 2y2) (x' + x2 + 2)-4y2

[(x2 + 1)2+ y2] [(x' + 3x2 + 2y2) a.2-2ya.tI
v (x, y) = (x' + 3x2 + 2y2) (x' +x2 + 2)-4y2

where a.\ (x, y) and a.2(x, y) are real and imaginary parts of an arbitrary analytic function.
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4.3.3. Vekua's system

It is well known that VEKUA's system

OU OV
---=au+bv+ f,
ox oy

(4.23)
ov OU
-+-=eu+dv+g,
ox oy

can be written in the form

(4.24 )
ow -
---==Aw+Bw + C,oz

where

A=~[a+d+ iCe-b)],
4

B=~[a-d+i(e+b)],
4

C =~(f+ ig).
2

Case 1. a = d, b + e = 0, i.e. B = O. The general solution of equation (4.24) is

IA(z,;)i; ( ( )+fC( -) fA(z,;)d; ) d
-w = e IX Z Z, Z e- z,

where IXis an arbitrary analytic function. Therefore

u = Re w, v = 1m w

presents the IX-solution of system (4.23).

Case 2. Consider equation (4.24) together with

(4.25)
ow -- - -
oz=Aw+Bw+C,

We shall look for the solution of equations (4.24) and (4.25), which we shall
consider as a system with two unknown functions wand w. Differentiating
(4.24) with respect to z, we obtain

Elimination of w yields the LAPLACEequation

02W

ozoz
Bz+BA ow AOW- [

A -~ (B +BA ) +BB ]
W

B oz oz
z

B
Z

c --
+-(Bz+BA)-BC-Cz=O.

B

According to the general theory (see [27]), LAPLACE'Sequation

02U OU OU
- + a - + b - + eu+ d = 0oxoy ox oy
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is integrable if one of the following conditions is fulfilled

ob
+ab-c=O

iJy
,(4.27)

(4.28)
oa
-+ab-c=O.
ox

We shall apply these conditions to equation (4.26). Condition (4.27)
becomes

A. - A ----Az +-(Bz + BA) + Az-- (Bz + BA) + BB= 0,
B B

I.e., BB = 0, or equivalently B = O. That is Case 1.
Condition (4.28) becomes

B; (Bz+BA)-B~~;z+B;A+BA;,)
+ Az + BB= 0

or, since we exclude B = 0,

B;Bz-BB;z-B2Az+ B2Az+ B3B= O.

In this case, we can obtain the general solution of
using (4.24) we can find the corresponding value for w.

Fina11y, putting

(4.26), and then,

Rew=Rew, 1m w= -1m W,

we get the iX-solution of (4.23) in the form of

u= Re w, v= 1m w.

4.3.4. The connection between Vekua's and PoloziI's p, q-syst~m

POLozIl's p, q-system

(4.29)
PU:r;+ qUy-Vy= 0,

-qux+ PUy+ V:r;=0,

after the transformation (see [22])

U=pU, v = v-qu,

reduces to VEKUA'Ssystem

U - v =Pz+qy U:r; y' ,
p

(4.30)

Uy+ Vx=
py-qzu

p
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whose complex form is

w=U+iV.

p-l-iq
However, since the system (4.29) can be integrated if ISan ana-

p+ l-iq
lytic function, the same holds for system (4.30).

Furthermore, system (4.30) can be integrated if

Px + %,+ i (PII--qx) = 0,

i.e., if q + ip is an analytic function, or if

Hz Bz- BBzz - B2liz + B2Bz + B3Ii = 0

where B =
p",+ qll+ i (pll-q",) and in those cases system (4.29) can also be

4p
,

integrated.

4.3.5. Some more systems

Using similar procedures, we can solve systems whose complex form is,
for example,

ow =p(z) ow
OZ OZ

where P (Z) is a c-analytic function, or

ow -
-=Aw+Bw+C,
oz

i.e., we can solve systems

P2UX-(PI + 1) vx-(PI-I) UII-P2UII= 0,

where Pi' P2 are given functions of x, y, where PI + iP2= P (z), or, in the
second case

where

A=~[a+d+i(c-b)],
4

B=~ [a-d+ i (c + b)],
4

C=~(f+ig).
2

The analogy with the considered classes is clear, since it is only a que-
stion of a formal permutation of z and z.
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4.4. Hyperbolic systems

Up to now we have been considering only elliptic systems of partial
differential equations. Hcw~ver, analogous results can be obtained for hyper-
bolic systems. The method which we shall expose here is more or less the
same as the method described earlier.

We shall add to the set of real numbers an element, which we shall
denote by the letter j. Let j satisfy all the operations of the set of real num-
bers. However, every appearance of the expression p will be replaced by 1.

For a number of the form z = x + jy, we shall say that its first part is
x, and the second part is y.

To a number z=x+jy, t:6ere corresponds a number x-jy, which we
shall denote by z.
Remark.Introductionof j does not lead to a new structure. It serves only to separate the
first and the second part of the number x +jy. This only means that x +jy is an ordered
pair (x, y).

In the further text we shall consider functions which map Rj into itself.
(Rj is the set of numbers of the form x + jy). Those are functions of the form

f(x + jy)= u (x, y) + jv(x, y).

We are especially interested in those functions which satisfy the system

(4.31)
i)u

+
i)v

= 0,
i)x oy

We shall call them a-functions.
Let us prove the following theorem.

Theorem 4.1. If the first part of an a-function
can be determined up to an arbitrary constant.

Proof. Suppose that the first part of an a-function is known. Then,
according to (4.31) we have

is known, then the second part

i)u i)u
dv= --dx--dy.i)y i)x

clearly represents a total differential,

Ji)u i)u
v= - -dx+-dy+C.i)y i)x

From this theorem we see that if we have a solution of a system of
partial differential equations which contains two function IXI(x, y) and 1X2(x, y)
such that IXI+ jIX2 is an arbitrary a-function, ~en that solution is an IX-solution.

Let us now define for a function w (z, z) = u (x, y) + jv (x, y) an operator
which involves j:

and henceThis expression

i)u i)v .
(

i)U i)V

)Djw=-+-+} -+- .
ox i)y i)y i)x

System (Rj, Dj' ~ '
{f (z)}) is a 8-syste'm.
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We can now obtain iX-solutions of hyperbolic systems in the same way
as we have done with elliptic ones. We give an example which corresponds to
Kotosov's example (see 4.2).

EXAMPLE. System

(4.32)
au ov
-+-=x,
Ox oy

ov au
:ox+ oy=x-y,

after multiplying the second equation by j, and adding it to the first, becomes

. . - j
- (

j

)-
j

DJw=x+Jx-JY=z+-(z+z)= 1+- z+ - z,
222

from where we get
I (

j

)- j -
w=- 1+- zz+-z2+/(z)

2 2 8

where 1 is an arbitrary a-function. Separating the first and the :second part of w, we get
the IX-solution of (4.32): .

1 1 1
u(x, y)=- X2__)'2 +- xY +IX(x, y),

224

3 1
v (x, y) ~ -g X2_-g y2 + ~(~, )').

4.5. Systems of type 2" x 2"

It is clear that all the methods which have been exposed here can be
extended to systems of type 2n x 2n.

Namely, if we know the general solution of a system of ordinary or
partial differential equations of type n x n,. we can then determine the iX-solu-
tion of the corresponding system of partial diff~rential equations of type 2 n x 2 n.

., We shall only give one example to illustrate this method.

EXAMPLE.The general solution of the system

.dx

dt
=ax-y,

dy .
- =x +aydt

where a is a constant, is. given by

x=elJt (Cj sin t + C2 cos t), y=elJt(c2sint-cjcos t),

where CI' C2 are arbitrary constants.
However, system

au ov
--- =It (x, )')u- 12(x, y) v-u1 ,
ox oy
ov au
-+-=1. (x, )')u +It (x, )'»)I-VI,oX oy

(4.33)
OUI OVI

.

Ox
-

0)'
=u+I,(x.y)u,-J;(x,y)vl'

OVI au,
-+-=v+J; (x, )')u+1t (x, y)v,
ox oy
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can be written in the form

(4.34)
Dw=f(z) W"-WI

Dw, = w + f(z)
w"

where w=u+iv, w,~ul+ivI' f=fr+iJ;.
Suppose that f is an analytic function. Then the general solution of (4.34) is given by

f(Z)~

[
Z Z

]
w ~ e 2 CPt(z) sin

2 + CP2(z) COS
2

f(Z)~

[
. Z Z

]WI = e 2 CP2(z) sm 2-CP, (z) cos
2 '

where CPt(z) = <X,(x, Y) + i~1 (x, y), CP2(z) = <X2(x, y) + i~2 (x, y) are arbitrary analytic functions.
Separating the real and imaginary parts of w and WI' we obtain the <x-solution of (4.31) in
the form

u (x, y)

(xfl + Yf2){=exp
2

cos
Xf2-Yfr [ . X ( Y Y ) x ( Y Y

)]SIfi- <Xlch--~2Sh- +cos- <X2ch-+~,sh-
2 2 2 2 2 2 2

. xJ;-yf. [ . x (
y y

) x (
y y

)]}-sm
2 sm2~' ch2 +<X2sh2 +cos 2 ~2ch 2-<XI sh2

'

v (x, y)

(Xf.+YJ;
){

Xh-Yf.
[

X ( Y Y ) X ( Y Y
)]= exp

2
cos

2
sin 2 ~I ch 2 + <X2 sh 2 + cos 2 ~2ch 2-<XI sh

2

. xJ;-yf. [ . x ( Y Y ) x ( Y y

)]
1

+sm-- Slfi- <XICh--~2Sh- +cos- <X2ch-+~ISh- ~,
2 2 2 2 2 2 2)
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