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PREFACE

For partial differential equations one can pose the following problems:
ProBLEM 1. To determine the general solution of the given equation.
PrOBLEM 2. To determine the particular solution of the given equation,
which also satisfies some given additional conditions.

In the beginning the theory of partial differential equations was directed
only to the solution of Problem 1. The expression

ey u(x, y)=,(x+ay)+g(x—ay),

obtained in 1747 by d’ALEMBERT and EULER is probably the first example of
a general solution. It presents the general solution of the classical wave equation

2 AUy, —uy, = 0.
where g is a constant.

This approach to partial differential equations dominated in the 18th
and the 19th century and has led to important results. The theory of LAP-
LACE (communicated to the Academy of Sciences in Paris in 1771, and pub-
lished in 1777) regarding the equation

Uy + auy + bu, 4+ cu+d=0,

where a, b, ¢, d are functions of x and y, and the more general theory of
DARBOUX from 1870 are the most beautiful contibutions to that branch of
mathematics.

However, partial differential equations appear not only in theoretical but
also in practical problems of Physics and Engineering, which do not require
general solutions, but rather those which also satisfy some additional condi-
tions (boundary, initial, mixed), i.e., in practical problems one must solve
Problem 2, and not Problem 1. In the theory of ordinary differential equa-
tions one can, as a rule, easily obtain the required particular solution star-
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ting with the general solution. D’ALEMBERT also found no difficulty in deter-
mining, starting with (1), the particular solution which satisfies the initial
conditions
u(x, 0)=A4(), u,(x,0)=B(x)
in the form
x+ay
3) u(x, ») = (4Gt ay)+ 4 (x—ay)) + - f B(r)dt.
ax—ay
These two facts have led mathematicians of the 18th and 19th century
to concentrate on solving Problem 1, hoping that the solution of Problem 2
can be easily obtained from the solution of Problem 1, as was done by
d’ALEMBERT in the case of equation (2). This approach has only partially
met with success. LAGRANGE succeeded in reducing Problem 1 for partial
differential equations of first order to ordinary differential equations, but for
partial differential equations of higher order we still do not possess general
methods of integration. In fact, not only do we not know the general met-
hods for determining the solution of Problem 1, but even if we know its
solution we cannot, in general, use it to arrive at the solution of Problem 2.
For example. though we know that the general solution of the LAPLACE
equation

4) Uy + Uy, =0,
is. given by
(5) u(x, y)=f(x+iy)+g@x—iy),

still, using (5) we cannot solve, without further investigation, the main pro-
blems which depend on equation (4), as, for instance, the problem of electrical
distribution.

For all those reasons in the second half of the 19th and in the 20th
century the theory of partial differential equations has almost abandoned the
general solutions. J. HADAMARD in his book [1] states that the equation by
itself is undetermined until some supplementary conditions are added to it,
when it becomes ,,determined®. In the French Encyclopaedia [2] he says:...
dans Pétude des équations aux dérivées partielles, plus encore que dans celle des
équations différentielles ordinaires, on doit cesser de rechercher, comme le vou-
lait I’ Analyse classique, Dintégrale générale, c’est-d-dire une expression satisfai-
sant forcément d I’équation donnée E et susceptible, grdce aux éléments arbitraires
qi’elle contient (constants ou fonctions), de représenter n’importe quelle solution
de cette équation. This opinion, given by such an authority, confirmed even
more mathematicians in their disdain of general solutions.

However, though the ,,0ld‘“ approach to partial differential equations
was never completely abandoned (we mention, for example, DRACH’s logic integra-
tion [3], [4], developed by G. HEILBRONN [5], [6]), only the newer times bring
almost complete renaissance of the classic approaches to partial differential
equations. So, for instance, referring to general solutions, which have been
proclaimed useless for applied sciences, the applied mathematician W. F. AMES
in his excellent book [7] says: A knowledge of these general solutions is extre-
mely important in the process of obtaining approximate solutions as well as acting
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as a guide to analytic methods. He believes that the natural sciences will
increase the interest in general solutions: There is little mathematical interest
in this area today, but hopefully the pressure from science and engineering will
breathe new life with the subject... Furthermore, AMES states on page 49
that in the theory of nonlinear partial differential equations the method of
general solutions has proved more useful than the special methods, and later
(page 180) he gives an example which shows how general solution can be
used to generate the required particular solution, saying with some bitterness
The utility of this method received little recognition.

Having in front of us those two, quite opposite opinions — the opinion -
of the great mathematician J. HADAMARD from 1923, which states that gene-
ral solutions are not useful for practical problems, and a contemporary opinion
from 1965 given by an applied mathematician that general solutions are
often more useful, one once again comes to the old conclusion that abandoning
a method a priori is absurd, that every approach has its place both in theory
and applications, and that the difference between the so-called ,,classical‘ and
,»-modern* mathematics is not so sharp.

This work is mainly devoted to the problems of finite integration of
partial differential equations. It exploits an algebraic (in a way ,,modern‘)
method for solving a (,,classical®“) problem of Analysis.

We introduce an operator 4 defined on a set of differentiable functions
by the following axioms:

A(fi+1,) =Afy + 4f,,
AL =HAfL+ AL,
AL (1)) =141

We then show that this operator is isomorphic with the ordinary deri-
vative and we explain the transition from a solution of an ordinary differen-
tial equation to the corresponding solution of an equation which involves the
operator A.

In the first chapter a special case of operator A4, the expression
S (x, y)oi+g(x, y) ai is applied to partial differential equations, especially to
X y

linear equations of parabolic type. Application of operator 4 shows a com-
plete analogy of a class of partial differential equations of parabolic type
with ordinary linear differential equations, which at the same time explains
why that class of parabolic equations can be reduced to ordinary differential
equations. Moreover, we have shown (Chapter 2) how one can obtain, starting
with the general solution of a partial differential equation of parabolic type
(which has been obtained by the above method), the particular solution
satisfying the given CAUCHY’s initial conditions. In other words, it appears
that general solutions are not always useless, since they yield the required
particular solutions.

In the theory of nonanalytical functions (which we consider in the third
Chapter) one interpretation of operator 4 has been introduced long time ago.
Independently from each other, some special cases of operator 4 have been
defined and examined by G. V. Korosov, D. Pompeiu, E. R. HEDRICK.
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I. N. VEKUA, A. BiLimovi¢ and others. The general operator A4 serves howe-
ver to give a better classification of nonanalytic functions, especially to bring
out various analogies of that theory with the theory of analytic functions.

Using a special class of nonanalytic functions, called c-analytic functions
we have generalised GOURSAT’s theorem which states that real and imaginary

parts of a complex function of the form f(z) +zg(2), where f and g are
2

2

analytic functions, satisfy the equation A2u=0, with A=ai;+;. In fact, we
x> oy

have proved that real and imaginary parts of a complex function of the form

n—1 " -
S (fi @) 7%+ gul2) 2¥)
k=0

where f,, ..., fa—y are analytic and g, ..., g, are c-analytic functions,
satisfy the equation A"u=0. For another class of nonanalytic functions, also
introduced here, we have proved a theorem analogous to CAUCHY’s theorem
on the integral over a closed curve. At the end of the third Chapter we give
an interesting application of nonanalytic functions. Namely, in 1777 LAPLACE
has proved that if the coefficients of the hyperbolic equation

6) Uyy+ av, + buy +cu=0
satisfy one of the following conditions
a;+ab—c=0 or b,+ab—c=0

then one can obtain the general solution of (6) in a finite form. More than
100 years later, P. BURGATTI proved in 1895 the same result for elliptic
equations

)] Upy -+ Uyy +atty + buy + cu=0.
whose coefficients satisfy

1

1 a*+ b
—ay+—by+
2 ° 2 Y

—c=0 and a,—b,=0.

Applying the complex operator to (6), and then to (7), we see that the cited
results are not independent, but rather that they follow from each other.

The fourth Chapter is devoted to systems of partial differential equations.
Among other things, we have determined the solutions of the following
systems

A (x, y)uy— B (x, y) vy=a, (x, y)u—a, (x, y) v+ b, (x, y),
A(x, y) vy +B(x, p)uy=a, (x, y)u+a, (x, y) v+ b, (x, y),
ayy + ayuy—bv,—b,v, = fu—gv+hy,
by +byu,+ayv,+ay,=gu+fr+h,,

(Pr—D uy+pyvy—pouty + (P + 1) v, =0,

Paip— (P + D) vp+ (py—1) 4y + ppvy =0.
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We have also obtained the solution of POLOZII’s system
pux'*‘quy'—“vy:()’ '—qux+puy+vx=0,

if 2=1=4

p+1l+ig

The solution of the famous system of VEKUA

is an analytic function.

Uy—vy=au+bv+f, vy+u,=cutdv+g.
was determined if a=d, b+c¢=0, or

B;B,—BB;,—B’A,+ B4, + B’B=0,
where

B=i—[a—d+i(c+b)], A=%[a+c+i(b—d)].

All the given solutions contain one arbitrary function and one arbitrary

constant.
*

* %
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CONVENTIONS

1. In order to avoid repetition of phrases such as ,,arbitrary differen-
tiable function‘‘ or ,,arbitrary twice differentiable function‘‘, etc., we have
agreed to write ,arbitrary function®. From the very nature of the expressions
which contain such functions, it can easily be seen what conditions od diffe-
rentiability does the function have to satisfy.

2. When mixed derivatives u,,, w,;, etc. were used, it was always sup-
posed that, €.g., Uy =1uy,.

3. We have used the letters G and K to denote the sets of all functions
in two variables, and the set of complex functions. In fact, we have supposed
that those functions are differentiable as many times as necessary.



0. INTRODUCTION

Let F be a set of differentiable functions, depending on one variable,
and let F; be an other set such that {0, 1} C F F,. We agree to let 0, 1
denote respectively the functions x+>0, x+> 1. Let 4 be a mapping of F into
F,, such that, for f;, f, = F, we have

(41) A(fi+1)=Af i+ Af,,
(42) AN =hAL+ AL,
(43) Af, (L) =1 - Af,.

We define the subset ® of F by the following relation

49 pc P> Ap=0.
It can easily be shown that {0, 1} ¢ ®. Indeed, by (41) we have
A0 = A (0 + 0) = A0 + A0 =2 A0,
i.e., A0=0, while, using (42) we obtain
Al=A(1-1)=1A41+1A41=2A41,
i.e., A1=0, and hence according to (A44), we see that {0, 1} c ®.

Supose that there exists at least one function X < F, such that AX=1.
Clearly, then A(X+¢)=1, for any ¢ = .

Definition 0.1. We shall say that the ordered quadruple (F, A, X, ®) with the
above properties represents a d-system. The second component of that system
will be called a 3-operator.

Operator A4, is defined recursively:
4, f=Af
Api f=AA4, 1) n=1,2,...).
Using (A1)—(A3), we can prove the following formula

0
©.1) A yreo s f= 3 L agi

=104
Definition 0.2. Relation of the form

JX, u, Au, ..., A;u)=0
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is called the operator equation of the 8-system (F, A, X, ®) of order n, with
respect to the unknown function u.

Definition 0.3. A4 solution of the operator equation is any function u which
identically satisfies it.

Fundamental theorem. Let

0.2) J(X,u, Au, ..., A,u)=0

be an operator equation in the system (F, A, X, ®), and let
(0.3) J(, u, Bu, ..., Byu)=0

be an operator equation of the system (G, B, Y, ¥). If u=f(X, ¢, ..., @) is
a solution of (0.2), then u=f(Y, §,, ..., 4,) is a solution of (0.3). Naturally,
Py» .- ., Pp are arbitrary elements of ®, and ., ..., 4, are arbitrary ele-
ments of ¥.

Proof. Using (0.1) we get
A X, o)=L AX=f", A4S X, 0, ..., o) =Af =f" AX =",
and, furthermore,
0.4) Anf (X, 91 oo, @u) =S ™.
Let u=f(X, ¢;, ..., ¢;) be a solution of (0.2). Then
JX, f, Af, ..., 4, /)=0.

However, in virtue of (0.4) we have

(0.5) JX L, f@)=0.
But then
(0.6) JY, £, f ..., f®)=0,

since (0.5) and (0.6) are in fact the same identity, and hence

u:f(Y’ q’l’ 04’11)

is a solution of (0.3).

ExampLE 0.1. Let D be the set of all differentiable functions of one real variable x, and let C
d d 1

be the set of all real constants. Then (D, —, X, C) and (D, xt—, —,C ) are two

dx dx X

3-systems.
Since the general solution of the differential equation

y'=3y +2y=0
(which we consider as an operator equation of th= first system) is given by

y=C e+ C,e*%,
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we conclude that the general solution of the differential equation
x4+ (2x3—3x) ¥y’ +2y=0

(which we consider as the operator equation of the seccnd system) is given by
y=C el-12) 4 C,el-2/2),

where in both cases C, and C, are arbitrary constants.

1. PARTIAL DIFFERENTIAL EQUATIONS
1.1. Basic concepts

In the theory of partial differential equations we can successfully use
the following operator

0 0
f(xa y)a_—l-g(x’ y)—
X oy
where f and g {are given functions of /x, y. Clearly, (9‘, foi+goi, o, d))
x y
is a J-system, where the set @ is described by the general solution of
0 0
(1.1 fx3) =42 ) 52=0,
x oy

ie., @ is the set of all functions F(x), where a/(x, y) is some solution of
(1.1), and o is any solution of

9 9
fOs )= 4g () =1.
x oy

We shall say that a solution of an n-th order partial differential equa-
tion is general if it contains n arbitrary functions.

1.2, First order partial differential equations

Let the functions « and w be defined as above. Then the determination
of the general solution of the equation

0 0
(1.2) F(w x, ¥), u, f(x, ) = +g(x, y)——")=0
ox oy
reduces to integration of the ordinary differential equation

(1.3) F(x, y,7)=0.

In fact, if G(x, y, C)=0 is the general solution of (1.3), then
G(w(x, y), u, a(x, y)) =0 is the general solution of (1.2).
We shall give two examples of this method.
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ExampLE 1.2.1. Equation
Sf(x, y) +g(x, ») y=a1 (x, y) w* + o, (x, y) u+os(x, y)

where «,, ,, o, are some particular solutions of (1.1), is analogous to RICCATCs equation
y=o,y +o,y+a,,

where o, «,, ®; are constants, and can, therefore, be integrated.
So, for example, we can integrate the following equation
ou ou
Yox oy =fi (=Y it + £, (X2 =) u+ £y (x*—»?),
where f, f,, f; are arbitrary functions of the given arguments.

ExampLE 1.2.2, Equation

1.4 (o )( AL T AL L
. XX — — —1,
1.4 U= tot ox ydy) ( ox "t by)

where k is an arbitrary function, is analogous to CLAIRAUT’S equation
(1.5) y=xy +k (¥,

and since y=Cx+k (C) is the general solution of (1.5), we have that

%, %) =f(%) log x +k (f (%))

is the general solution of (1.4). Besides, starting with the singular solution y=f(x) of (1.5).
we obtain the singular solution u=f(log x) of (1.4).
For instance, equation

(x ou + du)lo +( bu+ 0u)
u=|x —+y— x+|x—+y—
ox Y oy B ox oy

has the following general solution

e 2]

and the following singular solution
log? x
4

1.3. Second order equations of parabolic type

The operator equation
. A,u+F(X) Au+G(X)u=0,
with
0 0
A=f(x, y)_+g(x, y)—’
ox oy
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becomes

u *u *u of u
p Rl LA Sl 9 g8t ou
(1.6) f ax2+2ﬁg0x¢)y+g ()y1+( +g +F(m(x y))f)

2 0 0
+(£55r8 5+ F ot 9)8) 52+ G (o (x. y) u=0.
ox oy oy
Therefore, partial differential equation (1.6) reduces to the ordinary
differential equation
an V'+F(x)y'+G(x)y=0

and if C, F,(x)+ C,F,(x) is the general solution of (1.7), (C,, C, are arbitrary
constants), then C, («) F, (0)+C, () F, (w) is the general solution of (1.6).
In the general theory of parabolic equations (see, for example, [8]) it is
known that (1.6) can be reduced to (1.7), but the procedure is much longer.
The above result can be generalised. Namely, the equation

Y +F(x C)y +G (x,C)y=0

where C is a constant, is also a linear partial differential equation. The cor-
responding partial differential equation is

2__. 2__ 6f Q
(1.8) T (f tg +F(m,oc)f)

+( ——+g——+F (o, oc)f)——+G (0, ©)u=0.

However, if we suppose that o is not constant, e.g. that ?%0, func-
X

tions « and » are independent. We can therefore always find two functions
F,, and G,, such that

Fi(»,a)=F,(x, y) and G,(0, ©)=G,(x, y),
and equation (1.8) can be written in the following form

(1.9) f2——+ f gL ‘)yz +( ;’—f+g—+F , y)f)

+( b_+g—+F L (%, y)g)3u+Gz(x, Y u=0,
y

where F, and G, are arbitrary functions.
Equation (1.9) looks rather special. However, that is not true. In order
to show that we shall start with an arbitrary parabolic equation

(1.10) +F(x y)—+G(x, y)——+H(x Yu=0.

yz
Since F2 which appears in (1.9) is arbitrary, we can put
of og
F—f 5;—80—))
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Equation (1.10) then becomes

f2—+ f -I- Zg—yl:+( ‘)f+g of+F,f) +G(x, y)——+H(x »u=0,
It is well known that a condition for integrability of a parabolic
equation
Ay, + 2bugy, + city, + 2duy + 2eu, + fu=0, (b2—ac=0)
i.e. the condition that it may be reduced to CHARPIT’s system of partia)
differential equations, is given by

(1.11) b (2d—ﬂ—iﬂ)=a(2e—__—-).

ox a oy

In our case we get

g\ _paGgE_g 08 g0
fe (B =g D=rr (615 s Al

1e..
G=12 4 g% 1 Fg,
ox oy

from where we see that equations (1.9) and (1.10), together with the condition
(1.11) are equivalent.

This reduces integration of parabolic equation
Ay + 2 b1ty + Cllyy + 2duy + 2 eu, + fu=

with condition (1.11) to the problem of integration of ordinary linear differen-
tial equation of second order. Therefore, all the results in the theory of
linear differential equations can be extended to such parabolic equations. So,
for example, we have:

1° The general solution of equation (1.9) is of the from
u=C () f1(0)+ C; () /> ()

where C,, C, are arbitrary functions of «, and f; and f, are two particular
solutions satisfying

fHi(e)  f;(0)
#0

a4

do do

-2° If one particular solution of (1.9) is known, then we can determine
the general solution of the nonhomogeneous equation

S gy + 2 fouy, + 82Uy, + (ffz+gfy+F7f)um+(fgx+gg1/+F2g) u,+ Gu=H(x, y).
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ExampLE 1.3.1. Equation

(x%+y?)? (x2+ 1) (8x*+ x% +y?)

(1.12) Toxtyt (PP ligy + 2 XYlUgy + X Uy 165

¢

(2 +y7) (8x2y* + x2+3?)
16y?

Uy +(x2—yHu=0

satisfies the condition (1.11). Let us reduce it to the form (1.9). Dividing by (x2 + y2)*> we get

1 1 . 1 8xt+x2+y* 8x%y?+ x2+y? N x2—y?
—— Ut —— U —— Uy — ——————— U— u u
16x2 2% 8xy ¥ 16y Y 16x3 (¥ +3%) ° 16y (x2+y?) ¥ (x2+y?)?

It is now clear that (1.12) should be written as an operator equation in the system

(gld+10 2 ye, | 22)})
> 4x dx 4y0y’x Vs iy )

Equation (1.12) now becomes

R B ( 1, = ) ( 1 x? x2—y?
— —u, —lyy— | ——Ft———— | uy— | ——+ +
16 = 8y 162 \l6x 22 +79) )T \16y> 2y(x2+y2)) RARCEED

ie.,

1.13) 1 N 1 . 1 + 1 ( 1 \ 1 2x2
. _— —u —_u, -
( 16x2u" 8xy ¥ 16y " |ax\ 4x}) 4x(x2+y2) e

[ 1 ( 1 1 2x? x2—y?
() () umo
4y\ 4ay?/ dy\x*+)? x>+ y»)?

Comparing (1.13) with (1.9), we see that

1 1
f(x,J’)=Z;’ g(x!y)=z;s

Fy (50 ) = —— Gy =
X, y)=————, X, ) =————.
2 Y. 21y 2 ¥ 2+ 7y
We must now express F,, G, in the form
F, (x, y)=F, (x*+ %, x2—y%), G, (x, ¥) =G, (x*+y*, x*—)7).

Clearly,
u+v v
=

Fy (u, v)=—7, G, (4, V)=u_

Therefore, the corresponding equation in the system (&, 4, X, @) is

A2u+Fl(X!“P)Au+Gl(X’<P)=O’ ?E‘I’,
or,
X+9 P

Au+—u=0,
X2

Au—
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d
or, in the system (D, — X, C)
dx
, x+C C
(1.14) Y= Y +—=r=0,
X X

where C is a constant. A particular solution of (1.14) is yl=_xcez, and so we can find its
general solution y=Cx%%+ C,y, (x, C), where C,, C, are arbitrary constants.

Hence, the general solution of (1.12) is
u=C\ (x*~y») e?+52 (x2+y) (3% + C, (x*— ) y, (X* + 2, x2—»?),

where C,, C, are arbitrary differentiable functions of x2—j2

ExampLE 1.3.2. Equation

(1.15) 1082 (X +¥) (Vligy + 2XPlzy + Xllyy) + 108 X + ) (X 108 (X +3) + 31 (2 —p) s,
+10g (x +3) (v1og (x + ») + xf, (*— ) uy + f; (x*~y?) u=0.

is analogous to EULER’s equation

(1.16) "+ fixy +f,y=0,

where f,, f, are constants. The general solution of (1.16) is given by y=C x* + C,xB , where
a, P are different solutions of the equation 2+ (fi—1) ¢+ f,=0. If « =, then y=(C,+C, logx) x
presents the general solution of (1.16). Therefore, in the first case the general solution of
(1.15) is given by

C, (=% [log (x +Y)]2(2=32 + C, (x2—?) [log (x + y)]E (2—32),

where C,, C, are arbitrary differentiable functions of x*—y?, and o and B, being the solu-
tions of the equation

42—y —1t+ [, (x*—y) =0

also present functions of x2—jy2.
If «=p, the general solution of (1.15) is given by

[Cy (x2—y?) + C, (x*—?) log log (x + y)] [log (x + p)]x(2—»D),

1.4. Nonlinear equations of second order

The exposed method of integration reduces, in the general case, any
partial differential equation of the type

of of og og
J(ﬁ)a o, f2u$z+2fguzy+g2uyy+(fa_x"‘go_y) uz_l_(fzc_!—gb_y) Uy, fux+guy; u)= 0

to the ordinary differential equation

J(x9 C’ y”a y” y)=0,
where C is a constant.

ExampLE 1.4.1. Equation
1.17) u(€Puy,+2e* Vuy, +e*u,) =0 (e~ *—e~Y) (€Pu, + eV u,)?

in the 3-system (&, 4, X, ®) where

0 )
A=et—te¥—, X=—e3, ®={p(*—e-¥),
PP e {p e *—e-¥)}
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becomes
(1.18) uA,u=p (Au).

The general solution of (1.18) is
1

1—
{[C1X+C2{ "% for 1,
U=
C.eC2X for p=1,
where C,, C, are arbitrary elements of ®, and hence the general solution of (1.17) is

1

|Cie—=+C,| -e for p#1
u(x,y)=[

C.eCre—* for =1

where C,, C, are arbitrary differentiable functions of e-*—e-¥.

1.5. A remark on equations of higher order

It is natural that the above method can be extended to partial differen-
tial equations of higher order. So, for instance, starting with the linear
differential equation of third order

Y'+Fx)y'+G(x)y' +H(x)y=0,
we can solve the coresponding operator equation

Au+ F(X)Au+G(X)Au+ H(X)u=0,
or, taking

0 0
A=f(x, ) —+g(x, ¥)—,
ox oy
the following partial differential equation
Siupgr+ 3f2guxzy + 3fg2ux'yy + g3y, + (3f —+ 3fg + Ff2 ) Urz

(3fg"f+3fz"g+3gz +3fg %8 +2ng)u,y (3fg"g+3gz"g+ng) »

o f ()f
+(fa2+f Sre

+Ff +Fg +Gf)ux

iz_f+f<ﬂ)2+ dfdf fog Of _05_0_]‘;
ox, oy 0x ox dy oy 0y

o’g Jd'g ,9°8 og of bg of 03 ag 0g
A 2fg T8y 2O 8 ( ) +
(f ox? fgdx()y & 0y? & oy fOxd gOy() fdxt)y

+Ffag+Fg +Gg)uy+Hu 0.
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For example, if f(x, y)=x, g(x, )=y, we get
XUy + 3 X2Vl g+ 3XY Mgy + Yty + (3X2+ FX2) tyy + (3xy + 3xy + 2Fxy) Uy,
+(3y2+ Fy)uyy + (x + Fx + Gx) u, + (y + Fy + Gy) u, + Hu=0.
If F, G, H are constants, this equation becomes

(1.19) XUpyr + 3 X2 yum;, + 3XY2Uyy + ViUyyy + AX2U, + 2 axyuy,
' + ay2uy,, 4 bxu, + byu, + cu=0.

Its general solution is
1.20 S (2 ) ettons = Sz (2
. u(x, y)= ilogx — i
(1.20) 9= 3 fi(Z) e = 5 i (2)

where f,, f,, f; are arbitrary differentiable functions of 2 and tlsﬁtZ#tﬁéq
X

are roots of the equation
3+ (a—3)e2+(b—a+2)t+c=0.
If F, G, H are functions of 1, then (1.20) again presents the solution
X

of (1.19), but in this case #,, ,, t, are also functions of -,
X

1.6. Further generalisations

The quoted method can be extended to partial differential equations
which involve a function in several variables, u(x;, ..., x,). since

d 0
A= y ey —
glft(’ﬁ xn)ax

1

is also 3-operator.

2. CAUCHY’S PROBLEM FOR PARTIAL DIFFERENTIAL EQUATIONS

Up to now we have only been concerned with determination of general
solutions of partial differential equations which can be written in the form of
an operator equation. We shall now show how CAUCHY’s solution of such
equations can also be obtained.

Let J(x,y, »)=0 be an ordinary differential equation, whose general
solution is given by A(x, y, C)=0, where C is an arbitrary constant. Suppose
that the equation

(2.1 A (x5 35, €)=0

2 Publikacije Elektrotehnitkog fakulteta
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where x,, ¥, are given numbers can be solved with respect to C, i.e.. that
(2.1) implies

2.2) C=D(x,, yp)-

Then, CAUCHY’s solution of the above equation is given by

A(x’ ¥, (D(xo: yo))=0'

The equation which corresponds to the above equation in the system
(G, 4, X, D) is

(2'3) J(w(x, }’), u, Au)=0
Its general solution is
2.4) Ao (x, 3, v, 9 (2 (x, 1))=0,

where ¢ is an arbitrary function. We shall look, however, for the solution of
(2.4) which is such that when y=f(x), u=Q(x), i.e., such that

u(x, ()= Q).
Let F be a function such that
o(x, 1) =F(a(x 7))
If B(x)=a«(x, f(x)) has its inverse function B~1, then
Ft)=o (g1 @), £ ().

Let us now determine the function €, such that
Q ()=, (o (x, £ ().
Q (n=Q (1)

All we need is to solve with respect to ¢(a«) the following equation
(2:5) A(F (@), @ (@), ¢(x))=0.
In virtue of (2.2), from (2.5) we get
2 ()= (F(2), ().
and the required CAUCHY’s solution is given by

We obtain

Ao (x, 7). u, @(F(a(x, 7). @ (x(x »))=0.
. ExampLE 2.1. The general solution of
(2.6) xy' —y=2x%yy
is given by

2.7 y=xy?+Cx.
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- CaucHY’s integral, i.e., the solution satisfying y,=y(x,) where x,, ), are given
numbers, can be obtained if we put

o Yo—Xo¥o? )
Xo
Consider the equation
2.8) log x 2u log x—1) (xu,~—yu,) +u=0.

Its solution with an arbitrary function is
u=1log x [1? + f(xy).

We require to find that solution of (2.8) which contains the curve y=x2, u=x>.
Applying the above procedure, we get

1
log x=F(x%, ie., F(t)= 3 logt,
¥=0Q,(x3, ie., Q @)=t
and therefore

1
oc—?ocz loga
f(u)=——1——,

— loga
3 g

which means that the required solution is given by

3xy—xiy?log xy]

u(x, y)=logx[u2 +
log xy

ExampLE 2.2. The general solution of CLAIRAUT’sS equation

2.9 y=xy'—y'?
is
y=Cx—C?,

where C is an arbitrary constant. In this case CaucHy’s problem is not correctly set, since
if x,2%£4y,, we have two integral curves passing through each point (x,, y,). Those two
curves are obtainad if we put

_ %o ﬂ:l/xoz—4.1’o .

(2.10) c .

We require to find those integral surfaces of the equation
1
2.11) i =— (xPuy—y2u,) — (X2, —y*u,)
y

. . 15
which contain the curve y=x, u=——.
4 x?

* The genc=ral solution of equation (2.11) is given by

u x, )~ %f (716 . %)—[f (% +§)]

2+
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Applying the above procedure, we have

b p(2) e et
— (;—) , L€, (t)—'z'—

x
15 2 15
—_—=—), e, Q)=——12
4x? l(x) € 1) 16

Therefore, in virtue of (2.10),

fOy=—-e—

o o 15«2
2 i\/TJr ]
2 i

1 _Soz _ iz
(a)"‘—4—7 f(a)—_z .

Therefore, the following surfaces

) 5(1+1)1 25(1+1>2 ) 3(1+1)1 9 /1 1)2

==t | ===+ ) u Y= |t — ) ——— [+ —

uxy4xyy16xy y4xyy16(xy
15

satisfy equation (2.11) and contain the curve y=x, u=—-z—z.
x

A similar method can be applied to equations of higher order. The
case of linear partial differential equations of parabolic type has been discussed
in detail in [9]). We shall only cite the example which was given in that paper.

ExampLE 2.3. The function u which satisfies the BERTRAND equation
XUy + 2 XYUzy + V2Uyy + XUy + Yy = n2U
(n is a constant) and is such that

u(x, x*)=x3, uy (x, %) = x2,
is given by

e oo 2] S oo )2 )

3. COMPLEX OPERATORS. NONANALYTIC FUNCTIONS
3.1. Kolosov’s operator D

On the set of complex functions w,
w(@)=u(x, )+ (x, ), z=x+1y,

‘where u and v are differentiable functions, G. V. Korosov [10], [11], [12],
introduced the operator D defined by
ou ()v_l_l.(ﬂ 25)

ox 0y
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and used it to integrate various systems of partial differential equations which
appear in Mathematical Physics, especially in the Theory of Elasticity. KoLosov
first proved in [10] certain formulas which enable him to work with D as if
it were a derivative, and then applied them in [12] using as an inspiration
the corresponding ordinary differential equations. Later on he showed the ge-
neral method of integration, which corresponds to our Fundamental Theorem.

KoLosov’s operator D was rediscovered a number of times. The history
of this problem, with an extensive literature, is given in [13] and [14].-

In fact, it is not difficult to show that D is a d-operator. The corres-
ponding S-system is (K, D, z/2, {f(2)}), where f are arbitrary analytic
functions.

We shall now use an operator analogous to D to obtain an interesting
property of a class of complex functions.

3.2. Generalisation of Goursat’s theorem

As a generalisation of the known fact that the real and imaginary parts of
an analytic function f(z)=u(x, y)+iv(x, ¥) satisfy LAPLACE’s equation Au=0,
Av=0, we have the following GOURSAT’s theorem (see, for example, [15],
pp. 193—194).

The real and imaginary parts of a bianalytic functions, ie., a function
of the form

So(@+2£,(2),
where f, and f; are analytic functions, satisfy MAXWELL’s equation A2u=0,
A2p=0.
Using the operator D, S. FEMPL [16] has generalised GOURSAT’S theorem.

He has proved that the real and imaginary parts of an ,areolare polynomial*,
i.e., of the function

S @)z
=0

where f;, are analytic functions, satisfy the equation A%u=0, A%v=0. FEMPL
has also proved that the areolare polynomials are the only functions whose
n-th deviation from analyticity is an analytic function. The n-th deviation from
analyticity is defined as D,w, where D,=D (D), etc.

In paper [17] we have introduced c-analytic functions as complex func-
tions whose real and imaginary parts satisfy the following system of partial
differential equations:

9—u+ﬂ=0, ov  du
ox 0y ox 0y

 c-analytic functions are in connection with the operator D (also mirodu-
ced by Korosov):

5w=ﬂ+ﬂ+i(ﬂ—ﬂ).
ox Oy ox &yl
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Clearly, D is also a J&-operator, with the corresponding 3-system
(%, D, z/2, {f(2)}), where f(z) are c-analytic function.

We shall say that D,w is the n-th deviation from c-analyticity (D, =
=D (Dpy), )

Notice that the statement ,,deviation of a function w from analyticity is
an analytic function‘ is equivalent to ,,D,w= 0. Similarly, statements ,,deviation
of a function w from c-analyticity is a c-analytic function and ,,D,w= 0%
are equivalent.

Theorem 3.1. Real and imaginary parts, u and v, of a function of the form

(3.1) f(D+2£,(2)

where f, and [, are c-analytic functions, satisfy Laplace’s equation, i.e., we
have
A2y=0, Az2v=0.

Moreover, functions of the form (3.1) are the only functions whose deviation
from c-analyticity is a c-analytic function.

Proof.¥ We immediately see that for a function w of the form (3.1) we have

(3.2) ,‘ D,w=0.
Let us now prove the other parts of the theorem.
Put _
Dw=U(x, y)+iV(x, y).

Then, condition (3.2) implies
QU OV _ o oV _oU_,

b

ox Oy_ ’ ox oy
and, as a consequence,
(3.3) AU=0, AV=0.
Since
U:.ﬂ_l_ﬂ’ V=ﬂ__.gl_‘
ox Oy ox 0y
we have

2 A)—2 (AV)=Au
ox oy

and by (3.3) we obtain
3.4 A2y=0

Similary, A2v=0.
Let us now prove that functions of the form (3.1) are the only such
functions for which (3.2) holds.

1) This is a correction of the proof given in [17].
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Equation (3.2) separates into the following system

*u  o*u 0%y
3.5 —_———=—2
3-5) ox* 0y* 0x0y
%y 0%y 0%u
3.6 o2 :
(3-6) 0y* ox? 0x0y

Start with equation (3.4) whose expanded form is

ru Fu_ du_

oxt  oxtoyr oyt

The general solution of this equation is (see [18])

(3.7 u(x, P)=f(x+)+yg(x+ip)+¢(x—iy)+yb(x—iy),
where f, g, @, ¢ are arbitrary differentiable functions.
From (3.5) and (3.7) we get

_02v
0x0y

=—f" (x+iy)+ig' (x+iy)—yg" (x +iy)—¢" (x—iy)
— i (x—iy)—yy” (x—1iy),
and, integrating with respect to x,

OV f i)+ g (o iY)— g (x4 1)~ (x—1)

oy
—iy (x—iy)—yy x—ip) + F (),

where F is an arbitrary function.
Integrate now the obtained equation with respect to y. We find

(3.8) v(x, y)=if (x+iy)+iyg (x+iy)—ip (x—iy)—iyy (x—iy) + ¥ () + @ (x),

where @ is an arbitrary differentiable function, and ¥ (y)= f F(y)dy.

In order to determine ® and ¥ we shall use. besides (3.8), equations (3.6)

and (3.7). The last one becomes
T (5)—@" (x)=0.
This means that
D (xX)=ax2+bx+c, Y (¥)=ay2+dy+e,

where a, b, ¢, d, e are arbitrary constants.
Therefore,
Ox)+¥(y)=ax2+bx+c+ay+dy+e,
ie.,

q)(?c)+‘lf‘(y)=(%;+%d§+c+e)+z(a5+§—%)=a(g)+zﬁ(;)-
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Function w now becomes
w(2)=u(x, ¥)+iv(x, ¥) =20 (x—iy)+ 2y (x—iy) +ia (2) + izB (2)
=2¢(2)—izy @) +ia (2) +izB (D) =f, () + 2, (),
where f,(z2)=2¢ @)+ izy @) +ix(2), f;(@)=—i} (@) +if ().

This completes the proof of the above theorem.
Continuing this procedure, we can show that a function of the form

[ @) +2f, (@) + 22, (2)

is such that its second deviation from c-analyticity is a c-analytic function,
and that its real and imaginary parts satisfy

Alu=0, Asv=0.

By the use of an operator which is inverse to D, we can prove a more
general result, which is analogous to FEMPL’s result on areolare polynomials,
i.e., that a function of the form

S 44
i=0

is such that its »n-th deviation from c-analyticity 1s a c-analytic function,
while its real and imaginary parts, ¥ and v, satisfy the equations

(3.9) : , Arriy=0, Arty=0.

We shall give the most general result related to equations (3.9), which
contains all the previous results.

Lemma 3.1. Let w(z, z)=u(x, y)+iv(x, y) be a complex function whose partial
derjvatives with respect to z and z are continuous. Then .

oy
9z" dzn
Proof. Let n=1. Then ST

2 2. ¥3
2 ”’_=i(i+,-i) (d_w___d_w)=i<d_w+d w)=i(Au+iAv).
0z0z 4 \ox oy/\ox 0y 4 \0x2 0)? 4

(3.10) =22Ln(Anu+iAnv).

Suppose that (3.10) holds for some »n. Then

2n+2
d—il—_w—=l(—d—+i1)(i— i)—(A”u+zA”v)
znt1gznt1 ox oy/\ox oy] 22n

1 62 Z »
= iAn
( = byz) (Amu+iAny)’

22n+2

A(A%y+iArY)=— (A"Hu +iAnt1y),

\ 22 n+2
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This completes the induction proof.
Corollary.

orw . .
-=0 if and only if A"u=0 and A?v=0.

dz7 0z

Theorem 3.2. Complex functions of the form

n—1

(3.11) > [2i(2) + 2% (2)),

=0

where f;, g (i=0, ..., n—1) are analyric, c-unalytic functions, respectively, and
only those functions, have the property that their real and imaginary parts, u
and v, satisfy

(3.12) Ary=0, Anv=0,
Proof. Conditions (3.12) are equivalent to

oy

dzn dzm

(3.13)

However, the general solution of (3.13) is (3.11).

3.3. A generalisation of Kolosov’s operators

KoLosoVv’s operator D can be generalised as follows: Define an operator
K on the set of complex functions w=u(x, y)+iv(x, y) by

Kw:Aﬂ—Bﬂ_H(AﬂJrBﬂ)
ox y ox Jy
where A4 and B are functions of x, y.
Clearly K is a d-operator.
According to the general theory, it f 1s any solution of the equation

Kw=1.
and g a solution of -
Kw=0,
then equation ‘
3.14) J(f, g w, Kw, ..., Kw)=0

in the system (%, K, f, {g}) corresponds to equation
(3‘15) J(x’ C’ y’y’,"'yy(”))=01 IS

in the system (D, o’ X, C), where C is constant, and, theretore. integratiop

of equation (3.14) reduces to integrétion of (3.15).



26 Jovan D. Kecki¢

3.4. On nonanalytic functions

Nonanalytic functions w can be described by Dw=0. Introducing some
other special conditions, one can define subclasses of the class of non-
analytic functions. So, for example, systems

du ov Jdu 0
(@5 =m0 5 @S- —n )5,

ou_1ov ou__ 10y

dx—; ¢)y’ oy p Ox

u ou Ov ou ou  Odv
—4+gqg—=0, —gq—+p—+—=0,
pox qdy oy qu p()y ox

0 0 0

2 au+bv+f, ﬂ+-—"=cu+dv+g,
0x Oy ox Oy

where p, ¢, a, b, ¢, d, f, g are functions of x, y subjected to certain conditions
define the so called Z-monogenic, p-analytic, p, g-analytic, and generalised analytic
functions, introduced by L. BERs and A. GELBART [19] and [20] and G.N.
PoroZii [21] and I. N. VEKUA [22]. Their complex forms are

ow ow /]
(61+0,+T+ 1) =+(6—0, +T,—1) —+ (6, + 62—"2—"1)—‘1’
oz oz oz

oe
+(oy—a,—1,+ 1) v =0,
0z

ow _1—pow
oz 1l+p 9z’

@+ 1—ig) 21 (p—1+ig) 22 =0,
0z 0z

0%  Aw+Bw+F,
0z

A=%(a+d+ic—ib), B=%(a——d+ic+ib), F=%(f+ig).

More details about nonanalytic functions can be found in papers [13]
and [14].
It is not difficult to show that D=2§:, 5=2§. It is often stated
z z
that one can operate with %, ai as if they were derivatives, and in some
z zZ

. . . 0
places even the authors prove some of their basic properties. In fact, 5 and
V4

o . N . - . .
5, e partial derivatives with respect to z and 2z, which can be considered
z

as independent variables. In order to justify this assertion, we cite the follo-
wing facts: ‘
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1° For two real functions u, v: R2— R it is said that they are indepen-
dent if there does not exist a differentiable function ¢ such that u=¢ (v).

It is well known that the necessary and sufficient condition for inde-
pendence of functions u# and v is given by

Introducing the corresponding definition of independent functions wu, v:
R2— C, we see that the condition of independence remains unchanged.
Consider now the functions

ulx, V)=x+1iy, vix, y)=x—iy.
We have
1 i

1 —i

J= =—2i+#0,

and according to the above definition they are independent.
2° From RIEMANN’s formula for the complex derivative (see [23])

d_w—_-i[ﬂ_f_ﬂ_}.l(ﬂ_éﬁ)]_;_i ﬂ‘_ﬂ+l(ﬂ+2) e—21¢
dz 2lox oy ox Oy 2{ox oy dx 0y
where dz=cet?, multiplying by dz, we obtain the expression which is analo-

gous to the complete differential of a real function of two variables, namely
(see [24])

dw=2" @z +°% 4.
oz oz

This way of thinking enables us to classify complex functions in the
following way:

A complex function, which has derivatives with respect to z and 2z, can
be considered as a solution of a partial differential equation.

So for example analytic functions present the solution of the simplest
partial differential equation Z—}f=0. Another class of complex functions, as
z

simple as the class of analytic functions, is the class of c-analytic functions,
. ow

defined by —=0.

) oz

A number of other special classes of nonanalytic functions are determi-
ned in [25] and [26].

3.5. Functions which are analytic in the sense of operator X
A natural generalisation of analytic and c-analytic functions present
functions which are analytic in the sense of operator K. They are the functions
w(z, z)=u(x, y)+iv(x, y) whose real and imaginary parts satisfy the follo-
wing system
ou

2 9 92 ‘
4G ) —B 0 D T=0, A0 )T+ Bx )0,

where 4 and B are given functions.
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Putting 4=B, we get the class of analytic functions, while for 4= —B,
we get the class of c-analytic functions.

Multiplying the second equation of the above system by i, and adding
it to the first, we get

(3.16) (A4+B) 2%+ (4—B)°" —0.
dz 0z

Since (3.16) is a linear homogenoeus partial differential equation, it can
always be reduced to an ordinary differential equation, so that we can then
determine the classes of functions which are analytic in the sense of operator K.

For example, if 4 and B are constants, the corresponding functions
which are analytic in the sense of operator K have the form

f((4—B)yz——(4+ B) z)-

3.6. Two properties of compound analytic functions

c-analytic functions, the simplest nonanalytic functions, are obtained
from analytic functions by a formal substitution of z for z.

A much more general class of nonanalytic functions is obtained by a formal
substitution of & (z, z) for z, where h is a complex function.

Let h(x, y)=C be the general solution of the differential equation

! f((x’y)) Then h satisfies the following equation
X )

(3.17) fz 45 =0
0z oz
The general solution of (3.17) is
w=F(h(z, z))

where F is an arbitrary differentiable function.

Complex function w given by (3.17) need not be an analytic function.
Such functions we shall call compound analytic functions.
--We shall give two theorems for such functions, which are analogous to
the corresponding theorems which hold for analytic functions.

Theorem 3.3. If w is a compound analytic function in a simply connected
region R, and if C is a closed contour lying entirely inside R, then

fw(z, z)dh=0.
Pr00f Let f(z, D)=/ (%, y)+tfz(x y), and g(z,2)=g (x, y)+lg2 *x, »)
Equation (3.17) can be written in the form

i+ 1) Qg vyt 10— 0,)) + (g, + i) (tg— vy + 15+ 1)) = O,
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and it separates into the system

(fi+8)us+(fo—8) uy—(f3+8) vz +(fi—&) vy =0,

(3.18)

P (fat+g)u,—(fi—&)uy+(fi+8) v+ (fo—8) vy=0
ut C

(3.19) a=fi+8. b’—‘_fzfgz,‘ c=fr+8, d=fi—g&.
Then

fwdh f(u+tv)( dz+;dz).
C

=—f(u+1 )[(%+—2+1 (%% oh, )](dx+1dy)
R

=f(u+iv) [(%hidx+%};—l‘dy)+z 2dx+ 2dy)]
c

=fu%dx+uo—’ﬁdy——v%dx—v%dy
ox oy ox yo
+i bh‘ dx+v0h‘dy+uohzdx+ ok, dy
o oy oy
c

:f(u %_v%) dx.].(u%_v%)dy
ox ox oy oy
C

oh,
+if(v‘—)—hl+u')h2)dx+( +uo—'ﬁ)dy
ox ox oy oy
C

- _"_ u‘)—h—‘—v%)—i(u%—v%)]dxdy
0x oy oy oy\ ox ox
+1i ‘)h ﬂlﬁ) —( %-i-u—) dx dy
0x dy oy oy\ ox ox

[ (et rot_uoh ovok g,
dx dy O0x 0y 0y 0x Oy Ox

v ovoh1 dudh, f—v%~ﬁ‘%)dxdy
ox oy Ox oy 0y ox 0y O0x
=P +iP,
where the double integrals are taken over the surface bounded by C. Let us

determine the first one. Since w and A satisfy (3.17), i.e., since their real and
imaginary parts :atisfy the system (3.18), using notations (3.19) we get
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P= ff (0u ()hl (ab—cd) u,+ (b + d?) u, (@*+c®) hyx +(ab—cd) b,

o0x dy bc +ad bc+ad
_ﬂ oh, (@*+c»)u,+(ab—cd)u, (ab—cd)h,x+(b2+dz)h1) dx dy
oy 0x be +ad bec+ad
[ (2o ou it @@ tabca ou o
dx 0y 0y 0x (be + ad)? dy ox
— 2 2 2 2 2
+_(qb ed)? (a? +c?) (b2 +d?) Q%)dxdy.
(be + ad)? ox 0y

Similarly, we can prove that P,=0, which completes the proof of this
theorem.
Theorem 3.4. If we know the real part of a compound analytic function
w(z, 2)=u(x, y)+iv(x, y), then we can determine its imaginary part up to
a constant.

Proof. Let u be known. Solving (3.18) with respect to v, and v,, and
using (3.19), we get

_ (@—cd)u,+ (b*+d) u, b (@*+c? u, + (ab—cd) u,
x bc+ad ’ Y bc+ad ’
Now
dv:(ab—cd) u,+(b*+d* u, dre— (a2+c2) u,+@id)& dy.

bc+ad bc +ad

This expression is a complete differential, which means that v can be
determined up to a constant.

Remark. Notice that functions which are analytic in the sense of operator K are a special
case of compound analytic functions.

3.7. Invariants of hyperbolic and elliptic partial differential equations

. . . s 2 4 .
Using the partial derivatives 3 5, we can connect two important re-
z

z
sults of LAPLACE (published in 1777) and BURGATTI (published in 1895). See
[27] and [28]. Namely, LAPLACE has proved that if one of the conditions

az+ab—c=0, b,+ab—c=0
is satisfied, then the hyperbolic equation
Uy + atly+ bu, 4+ cu=0

can be integrated, i.e., one can find its general solution. BURGATTI has proved
that if

%Ax+%By+A B ¢=0 and 4,—B,=0,

then the equation
Uy + Uy + Atiy+ Buy + C=0
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can also be integrated. These two results follow, in fact, from each other.
The proof of this can be found in [29].

4. SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS

Definition 4.1. We shall say that a system of k partial differential equations
with k unknown functions is of type k x k.

4.1. Systems of type 2 x 2 — application of a real operator

The method considered in 2. can be extended and applied to systems of
partial differential equations. We shall illustrate the method by the systems
of the form

FG )t ag (i) 2 —a(@u+b (@),
x y

65248 (5, ) S (@u+d(@),
x oy

where « (x, y) has the same meaning as in 1.1.
In the system (&, 4, X, ®) this system of equations reads

4.1 Au=au+ by, Av=cu+dy, (a, b, c, dc D)
where
0 0
A=f—4+g—.
f0x+gby

We shall look for the solution in the form

u=2re¥, y=yeX,
Then
Au=2Are™X, Av=pre’X

and substituting into (4.1) we get
4.2) (@a—r)A+bp=0, ch+(d—r)p=0.
Algebraic system (4.2) will have nontrivial solutions in A, u only if

a—r b _o,

c d—r
from where we get two values for r (we suppose that r,£r,). Putting each of
those values into (4.2) we get Ay, Ay, Wy, WUp-

General solution of the system (4.1) is then

u=Cnen* + C,n X, y=CiuenX +C,u,en¥X,
where C,, C, are arbitrary elements of the set @,
For example, consider the system

P )

y i x S f -y ut £y (2—y ),
ox dy
ov ov

Yy =X —=f;(x2—y)utf(x2—y?)v.
ox oy
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We have
X=log(x+y), ®={f(x2—y?)},

and, therefore, its general solution is given by
u(x, y)=C,(x2—y) \ (x2—p?) (x + y)r: *=»»
+ Cy (x2—y2) A, (x2—p2) (x + y)r2 (2=,
v(x, y)=Ci (x2—?) ty (x2—p?) (x + y)1 =72
+ Cy (x2—y2) w, (x2—y2) (x + y)r2 -7,

where A, w;, r; (i=1, 2) are determined in the same way as above (they are
now functions of x2—y?), and C;, C, are functions of the same argument.

4.2. Systems of type 2 x 2 — application of complex operators

We have already stated that KorLosov used his operator D for inte-
gration of systems of partial differential equations. So, for example, (see [12])
system

4.3) ———=X, —+—=X—).
y

after multiplying the second equation by i, and adding it to the first, KorLo-
SOV writes in the form

(4.4) Dw=i'22-+(1+%)2,

whereform, by analogy with ordinary differential equation

y' = Cl ‘+‘ sz.,
whose solution is

xz
y:C1x+C2';+C3,
(C,; is an arbitrary constant), he obtains a solution of (4.4) in the form of
izz 1 i\-
4.5 w=E+_(1+_) 2oz
(4.5) PR 5| Zte @)

where ¢ 1s an arbitrary analytic function. Separating the real and imaginary
parts of (4.5) we finally get

1
u(x, y)= ” (x2—=y2+xy) + 9, (x, )
(4.6)
’ 3 1 1
v (x, y)=§x2+;y2—;xy+<pz (x; »)s

where @;, ¢, are such that ¢, +i¢, is an analytic function.
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Solution (4.6) is not the general solution of the system (4.3), as it
does not contain two arbitrary functions. Namely, given the function ¢, the
other function ¢, can be determined, up to a constant. Solution (4.6) depends,
therefore, on an arbitrary function and an arbitrary constant.

Definition 4.2. A solution of an n-th order system of partial differential equations

ou Ou oOv Ov t)"v)
g cx ¢9v 97 —)=0,

Fl(x7y5u,vy v k) 9 I A ]
dx 0y Ox Oy oy"

0 o on
Fz(X,y,u, v, 'a_u _” ’91 _V v)=0

a'x, 0y9 0)(’ dy,-..,o?
will be called «-solution, if it contains n arbitrary functions and n arbitrary
constants.

System (4.3) is naturally only an example for this method of integration.
More generally, any system of the form

@.7) O ey, 2o (x v, 4, ),
ox Oy dy ox

where u and v are the unknown functions of x, y, and where f and g are
given functions, under the condition

(4‘8) f(x, Y, U, v)+l'g(x, Y, U, V)=F(Z,Z_,W),
reduces to an ordinary differential equation

“4.9) Yy =F(C, x, ),

where C is a parameter.

If
y=@®(x,C, C)

is the general solution of equation (4.9) (C; is the constant of integration),
then the a-solution of (4.7) is given by

u(x,y)=Re(I>(-;—, z, <p(z)), v(x,y)=Imd><%,z, cp(z))v
where ¢ is an arbitrary analytic function.

Remark. System (4.7) can always be written in the form

Z+z z—z wiw w—w\ . (z+z z—z wW+w w—w
Dw—f(z’zi’ 7’ 2i)+ (2’2:’ 2’ 21')

=F(z,z, w, w),

qut that equation is not an operator equation in the sense of Definition 0.2. Condition
(4.8) is therefore necessary for this method of integration.

3 Publikacije Elektrotehnitkog fakulteta
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Various special cases of (4.7) are conmsidered in papers [30], {31}, [32].
For example, the following systems are solved:

—o—"——ﬂ=Ref(z, —_"i>, 2K-i—i'f=lmf(z, —‘f—) ,
z y z

dx 0y ox 0
and
_0 _Relf@Delw)h L+2_Im(f(z 2) g Wi
ox Oy ox 9dy

etc., where the main idea was to reduce the integration of these systems to
ordinary differential equations, whose solutions can be easily obtained.

Some more complicated systems were also solved, as for example
(see [33]):

u=xP+yQ+Re[f(P+iQ)], v=xQ—yP+Im[f(P+iQ)),
where f is a given function and
2P=u,—vy, 2Q0=v,+u,.
The above system reduces to CLAIRAUT’s differential equation. In papers [34],

[35), [26] some systems of second order were considered.

All these results are only technical realisations of KoOLOsOV’s idea.

Since the operator D is also a S-operator, one can also obtain solutions
of analogous systems of partial differential equations, i.e., of those systems,
whose complex form is an operator equation involving D-

Applying the operators K, K one can solve systems which are more

general than those solvable by KoLOSOV’s operators. Of course, we must
always suppose that we know the solutions of the following two systems:

(4.10) 424 % o, 4%¥1 8% 9
ox oy ox dy

and

(4.11) A% B2y 4% B2 .
ox oy ox oy

It was already shown (see 3.5) that (4.10) can always be written in
the form

(A4+B)°" 4+ (4—B) 2" ~0.
oz 0z

In the same way, (4.11) can be written as follows:

ow ow 1
A+B)—+(A—B) —=—.
( )02 ( )02 2
Since (4.10) and (4.11) are linear equations, their integration reduces
to ordinary differential equations. In this way, integration od systems of
partial differential equations, whose complex form is an operator equation in
K, is reduced to integration of three ordinary differential equations.
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For example, system

AQ—B—()—I-’:a(x, Nu—b(x, y)v+e(x, y),
ox oy

4224 B _b(x, yuta(x, y)v+d(x, y),
ox oy

has the following complex form
Kw=Fw+G,

where F(z, z)=a+ib, G(z, z)=c+id. 3
As we have mentioned earlier, KOLOSOV’s operator D, D satisfy the fol-
lowing equalities
p=22, D=22.
0z oz
Up to now we have considered only those operator equations which involve

= /. /] . . . N
D orD (1.e., —:—_, or 5—). In fact, we can consider equations which contain
z V4

both operators, or even more generally, which contain the expressions
ER N
o0z’ 9z 022’ 0zdz 9220
In this way we obtain solutions of far more general systems of partial
differential equations. In fact, we come to the following conclusion:

Every partial differential equation which contains a function in two variables
corresponds to a system of two partial differential equations containing two
unknown functions in two variables. If one knows the general solution of the
partial differential equation, one also knows the o-solution of the corresponding
systems, and vice versa.

We shall ill ustrate this by two examples.

ExAMPLE 4.2.1. System
@y (X, ¥) g+ @y (X, ¥) #y—byy (X, ¥) vo—by, (x, pIvy = f(x, y) u—g (x, y) v+ hy (x, ),
by (6, ¥) g+ by, (6, ) Uy +ay, (X, ) Ve +81, (X, V) vy =8 (X, ) u+f (X, ¥) v+ hy (x, ¥)

can bz reduced to the form

_ow — ow — -
4.12) A(z,z2)—=+B(z,z) —=C(z,z)w+ D (z, 2),
oz oz
where
A a; +b, Vi b,—ay, . B- all_blj Vi biu+a, ,
2 2 2 2

1 1
sz(f+ig), Dz?(hﬁ—ihz).

3%
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However, the following system of ordinary differential equations

413 dz dz 'dw
@.13) "4 B Cw+D

corresponds to (4.12), and knowing the solution of (4.13) we can arrive at the solution
of (4.12).

Let, for example, A=—z, B=2z, C=2, D=0.

Then the general solution of (4.12) is

w=zf (ZEZ)'
and therefore the a-solution of the corresponding system
ou ou oy

ov
—+y——3y— +3x—-—=4u,
xdx y‘ay y()x xOy “

4.19)
ou 3 ou ov ov 4
— —3x—+x—Fy—=
) oy Fox Ve
is given by
. u(xr y)=xfl (x’ y)_yfz (x’ y)’
4.15)

v(x, ) =yfi(x, M+ xf,(x, )

where f, +if, is an arbitrary compound analytic function, with %(z, z)=zz?. Therefore, ac-
cording to Theorem 3.5, (4.15) presents the o-solation of (4.14).

4.3. Other types of systems

In using complex operators we have reduced systems of partial differen-
tial equations of first order to one partial differential equation of the form

ow "—‘3):0
z 0z

(4-16) F(Z9Z w, '()_9

However, as we have mentioned earlier, we cannot reduce every system
to (4.16). In fact, starting with an arbitrary first order system of partial
differential equations, we can replace it by

(4.17) Flz,zww, 2%, 2% 9w 9w} o
0z 0z 0z Oz

Equations of the form (4.17) cannot be integrated by analogy with real
partial differential equations. Nevertheless, in some cases their solutions can be
determined.

4.3.1. A system analogous to PoloZil’s p-system

PoLoZii’s p-sistem of partial differential equations reads

ou_1ov  ou_ 12y
ox p oy’ oy p ox’
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where p is a given, positive and differentiable, function of x, y. 1ts’ complex
form is .

ow —ow

—=P Z, Z2)—=

0z ( ) dz
where

P(z,z2)="—

( ) +1

P(z, z) is clearly a real function. Suppose, however, that it 1s a pomplex
analytic function. We then get

(4.18) "—W_=P(z)"—’_f'.‘

We shall treat equation (4.18) as an undetermlned partlal differential
equation.

Put w=g (2, z)=g,+ig,, where g is a~ a‘rbitrary differentiable function.
Equation (4.18) becomes .

ow og

—=P(z)-=

0z @ oz
and this new equation can be integrated:

w=fP(z)%dE=P(z)f§—‘§_;dE=oc(z)+P(z)g(z? 2.

However, we have

Rew=Rew, Imw=—Imnw,
and’ therefore C |
Re(x+Pg)=Reg, Im(x+Pg)=—Img,
ie.,
@+ 0181 P282=81, %t P&t P28 = 8-

If p2+p,2—15£0, this algebraic system always has <~lutions in g,, g,
and they are given by oo : :
g = _ % tap+op, g =°‘z—“zP1;"°‘1Pz
! Pl +pi—1 ’ ? pii+pr—1 )
Therefore, the general solution of (4.18) is given by w=g,—ig,, and
the a-solution of the system corresponding

(n, - Dty + pyve—prthy + (01 + 1) vy =0,

. quz“‘(Pl"}‘l)vx+(p1_1)“y+szy=0’
by
%y +o,p+%, P, . : oAy —0, Py + &1 Py
u(x, y)= —AT 1T 202 0y )= 2 2P T2
( y) piE+pir—1 ( y) P2 +pi—1
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Exampii 4.3.1.1. System

x— D, +yv,—yu, +(x+1)v, =0,
“4.19
yup—x+ D) v+ (x—1uy, +yv, =0

has the following complex form

Putting w=g (z, 2)=g, + ig,, We get
w=u(2)+28 (2, 2),

where o =a, + i, is an arbitrary analytic function.
However, w=g,—ig,, and therefore,

o, +xo, +yo, Oy—X0, + Yoy

&= - x2+y—1

x2+y2—1 2=

which means that the a-solution of (4.19) is given by

u(x, y)=2, v(x, y)=—g,.

4.3.2. Poleiil’s p, g-system

As a generalisation of his p-system, PoLoZH introduced (see [36], [37],
[38]) the system

(4.20) Pug+ qy—vy =0, —qu,+puy,+v,=0,

where p, g are given differentiable functions of x, y with p>0. System (4.20)
defines the class of (p, g) — analytic functions.

Its complex form is

4.21) (p+ 1—ig) 2 + (p—1—ig) 2" —0.
‘ oz 0z

Applying the same method as before, we see that it is possible to deter-
mine the a-solution of (4.20) if

p—1—ig
P TH _p(z
: . p+l—ig ( )
is an analytic function. ’
Indeed, putting
V—V‘—‘—'g (Z, _;)':gl (x’ y) + igz (x’ y)’

where g is a differentiable complex function, equation (4.21) becomes

o% L P20,
oz o0z
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wherefrom we get

w= oc(z)——fP(z)%E dz= oc(z)-P(z)f% dz=a(2)—P(2) g(z, 2),

where o =0, +ia, is an arbitrary analytic function. However,

Rew=g;, Imw=—g,,

ie.,
r+g—1 2q
oy — &1 82=8>
(P*+1y+q? (PP+13+¢*
pr+qg*—1 2q
oy g+ &1= —8&2»

(p*+1y+q* 2Tt ly+q?

which gives the following algebraic system for g,, g:

pi+3p*+2¢® 2q &=«
P +1P g O (i lEegr 2
. 2q g— P +pi+2 &=
P+ L @l 2

Solving this system, we get

PP+ 1)+ @1 [(p* + D%+ 2) &, +2q )
(p*+3p+2¢Y) (p*+p* +2)—4g*

1

[(P*+ 1) +q* [(p* +3p*+2g) oty + 2q ]
(p*+3p*+2q%) (p*+p*+2)—44*

&2=
which gives the a-solution of (4.20) in the form

U=g, v=-5.

ExampLE 4.3.2.1. System
XUy—yiy—v, =0,

“4.22)
yug+xu, +v; =0,

has the following complex form
ow z—109w
—+ —==U.
oz z+1 9z

Since (z—1)/(z+1) is an analytic function, we obtain the o-solution of (4.22) in
the form
[(x? + 1 + 2 [(x* + x2 + 2) ot — 2yt ]
(X +3Xx2+2y7) (x* + X2 +2)—4)*

ux,y)=

[+ 1)+ y?2 1 [(x* + 3x2 4+ 2y} o, —2ya,]
(x*+3x24+2y?) (x* + x2 + 2)—4)*

v (x’ »)=

where «; (x, ») and «,(x, y) are real and imaginary parts of an arbitrary analytic function.
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4.3.3. Vekua’s system

It is well known that VEKUA’s system

ou odv

———=au+bv+f,
ox 0y
(4.23) R
ov u
5;+a—y—cu+dv+g,
can be written in the form
(4.24) o — Aw+ Bw +C,
z

where
A=%[a+d+i(c—b)], B=%[a——d+i(c+b)], C=%(f+ig).

Case 1. a=d, b+c=0, i.e. B=0. The general solution of equation (4.24) is
w=el 4@ (4 ()1 [ C(z, 2) e~ 4B DE) i,
where « is an arbitrary analytic function. Therefore
u=Rew, v=Imw

presents the «-solution of system (4.23).

Case 2. Consider equation (4.24) together with
(4.25) o _ Aw+Bw+C,

We shall look for the solution of equations (4.24) and (4.25), which we shall
consider as a system with two unknown functions w and w. Differentiating
(4.24) with respect to z, we obtain

2 J— p—
—‘)—(‘;—_=Azw+sz+Bzw+sz+c,.
20z

Elimination of w yields the LAPLACE equation

Ow _ B.+BAow_ Af)—w——[Az—% (B,+ BA) +B§] w

4.26 ~
(4.26) 0z0z B 0z 0z

-F%(BZ—FBZ)—BE—C,:O.

According to the general theory (see [27]), LAPLACE’s equation

0 0 0
L raZZi b cutd=0
o0xoy ox oy
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is integrable if one of the following conditions is fulfilled

(4.27) | %+ab—c= 0,
(4.28) 94 ap—c—o.
. X

We shall apply these conditions to equation (4.26). Cohdition 4.27)
becomes P

A, +%(Bz +BA)+ Az—% (B,+ BA)+ BB -0,
i.e., BB=0, or equivalently B=0. That is Case I.
Condition (4.28) becomes

B; (B, + BA)— B (B;; + B; A+ BA,)
BZ

+ A,+BB=0

or, since we exclude B=0,
B;B,—BB;,—B24,+ B*A,+ B*B=0.

In this case, we can obtain the general solution of (4.26), and then,

using (4.24) we can find the corresponding value for w.
Finally, putting

Rew=Re_v;, Imw=—Im7v,
we get the a-solution of (4.23) in the form of

u=Rew, v=Imw.

4.3.4. The connection between Vekua’s and PoloZil’s p, ¢g-system

PoLOZII’s p, g-system

pug + quy—v, =0,
(4.29)
—qUy +puy+ Vg = 03

after the transformation (see [22])

U= pu, V=v—qu,
reduces to VEKUA’s system
' U,—V,=2%y,
' P
(4.30)

Uy+V, =2y
p
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whose complex form is
‘_)_L‘_’ — Pyt aqy+t i (py_qz) W+ Prtqy+ i(Py_qz) ;’
0z 4p 4p
w=U-+iV.

if 2=1~i

p+1—ig

However, since the system (4.29) can be integrated isan ana-

lytic function, the same holds for system (4.30).
Furthermore, system (4.30) can be integrated if
Pz qy + i(py—'qx) = 0,
ie., if g+ip is an analytic function, or if

B; B,—BB;, —B*B,+ B?B, + B}B=0

where B =p—’i@+4'(p—”_q’2, and in those cases system (4.29) can also be
P
integrated.

4.3.5. Some more systems

Using similar procedures, we can solve systems whose complex form is,

for example,
ow - 0w
o _p) 2
0z ( ) oz
where P(z) is a c-analytic function, or

élv=Aw+B»;+C,
0z

i.e., we can solve systems
(P—Dug+p,v, +Dyty— (P + 1) vy =0,
Druy—(p1+ 1) vp—(py— D) uy—pouy =0,

where p,, p, are given functions of x, y, where p, +ip,=P (2), or, in the
second case

Up+vy=au+bv+f, vy—uy=cutdvig
where

A=~:—[a+d+ i (c—b)), B=%[a—d+ i(c+b)), C=%(f+ ig).

The analogy with the considered classes is clear, since it is only a que-
stion of a formal permutation of z and z.
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4.4. Hyperbolic systems

Up to now we have been considering only elliptic systems of partial
differential equations. Hcwever, analogous results can be obtained for hyper-
bolic systems. The method which we shall expose here is more or less the
same as the method described earlier.

We shall add to the set of real numbers an element, which we shall
denote by the letter j. Let j satisfy all the operations of the set of real num-
bers. However, every appearance of the expression j2 will be replaced by 1.

For a number of the form z=x+jy, we shall say that its first part is
x, and the second part is y.

To a numbgr z=x+jy, there corresponds a number x—jy, which we
shall denote by z.

Remark. Introduction of j does not lead to a new structure. It serves only to separate the
first and the second part of the number x +jy. This only means that x+jy is an ordered

pair (x, ).
In the further text we shall consider functions which map R; into itself.
(R; is the set of numbers of the form x +jy). Those are functions of the form
fx+jy)=ulx, y)+jv(x, y).
We are especially interested in those functions which satisfy the system
éﬂ_l_ﬂ:()’ a_lf_;_i‘_’: R

ox Oy oy Ox

We shall call them a-functions.
Let us prove the following theorem.

4.31)

Theorem 4.1. If the first part of an a-function is known, then the second part
can be determined up to an arbitrary constant.

Proof. Suppose that the first part of an a-function is known. Then,
according to (4.31) we have

This expression clearly represents a total differential, and hence
=—f9—"dx+o—"dy+c.
oy ox

From this theorem we see that if we have a solution of a system of
partial differential equations which contains two function o« (x, ) and «, (x, y)
such that o, +ja, is an arbitrary a-function, then that solution is an a-solution.

Let us now define for a function w(z, z)=u(x, y) +jv(x, ) an operator
which involves j:

ou Ov .[ou OV
Diw=-——=+—+j—+—).
I ox Oy J (0y dx)

System (Rj, Dy, %, {f (E)}) is a 3-system.
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We can now obtain a-solutions of hyperbolic systems in the same way
as we have done with elliptic ones. We give an example which corresponds to
KoLosov’s example (see 4.2).

ExaMPLE. System

432 du+0v bv+du
. — t——=X, N T =X,
(4.32) ox 3y X—y.

after multiplying the second equation by j, and adding it to the first, becomes

- 7 — J\= J
Dyw=x+jx—jy=z+—@+2)={1+—)z+ -z,
5 Jx—jy > (z+2) ( 2.) 3
from where we get v
w—i(l-i-i) Ez+iz2+f(5)
2 2 8
where f is an arbitrary a-function. Separating the first and the “second part of w, we get
the a-solution of (4.32): .

1 1 1
u(x,y)—? —7y2+zxy+<x(x,y),
R AL
v =g x ?J’f &, »).

4.5. Systems of type 2nx2n

It is clear that all the methods which have been exposed here can be
extended to systems of type 2nx2n.

Namely, if we know the general solution of a system of ordinary or
partial differential equations of type nxn, we can then determine the «-solu-
tion of the corresponding system of partial differential equations of type 27 x 2n.

. We shall only give one example to illustrate this method.
EXAMi)LE. The general solution of the system
dx Cody .
E=ax A E=x+ay
where a is a constant, is_given by
x=e%(c sint+c,cost), y=e®(c,sint—c,cos t),

where ¢,, ¢, are arbitrary constants.
However, system

ou ov
__"—‘__fl (x, J’)u"fz (x9 y)v—ux s
ox Oy
0v u ‘
=L Du+fi(x yIv—v,,
0x oy
“.33)
. du, Ov,
S —=ut+/f (x, y)u.-—fz(x, vy,

dx Oy
ov, Ouy
—'+————-V+f2 (xr y)u"‘fl (x’ y)v,

ox Oy
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can be written in the form

Dw=f(z) w—w,
4.34)

Dw,=w+f(2) w,,

where w=u+iv, w,=u,+iv,, f=fi+if;.
Suppose that f is an analytic function. Then the general solution of (4.34) is given by

z z z
w= ef(z) 2 [cp, (2) sin Y + @, (2) cos %]

= 3 z
wy=¢ 2 | 9. (2)sin 7—% (z) cos Pk

where @, (2)=o, (x, J’)+i{31 x,)), @:(2)=0,(x,»)+iB,(x, y) are arbitrary apalytic functions.
Separating the real and imaginary parts of w and w,, we obtain the o-solution of (4.31) in
the form

u(x, y)
xfi + )/ xHh—yh[ . x y y x y bAY
=exp( 12 2){cos 22 1[smz—(a,ch?—ﬁzsh?)+cos?(azch~2—+6,sh7J

)
—sin fo;yf, [sm (B,ch—+oczsh )+cos (B,_ch ——0 shi)]},

v(x, )

=exp (xfl ;—yfz) {cos sz;yf‘ [sm? (Bl ch—+oc2 sh )+cos > (Bz Ch~——oc1 sh %)]

XN x ¥ y x y y
+sm—iz——l[sm?(o:1 ch ?—{32 sh7)+cos 7(a2ch7+ﬁ‘ shf ]

u, (x,)
+ —
=exp (xfl 2yfz) {cos xfzzyfl [sin; (az ch%+ﬁ, sh%—)—cos % (az1 ch %-—-{32 sh 121)]

o xh—YA[ . x y ¥y x y y
—sszl[sm?(Bzch?——a, sh?)~0057({31 ch?+czc2 sh;) },

v (%, »)
=exp(xﬁ;yﬂ) {cos fo;yfl [sm?(ﬂz ch ——a, sh ) cos %(B, ch%-kocz sh )]

. oxf—yh [ . x ¥ y x
+sm—22—l[sm?(mzch?HS1 sha—)—cosf(a ch———ﬁzsh )]
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