PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU publications de la faculte d'ellectrotechnioue de l'universite a belgrade

SERIJA: MATEMATIKAIFIZIKA - SERIE: MATHEMATIQUESETPHYSIQUE
№ 320 - No 328 (1970)

327. SOME INEQUALITIES CONCERNING A TETRAHEDRON*
 Gojko Kalajdžić

Notations

Let P be a point inside the tetrahedron $A_{1} A_{2} A_{3} A_{4}$ and let
$H_{1}, H_{2}, H_{3}, H_{4} \quad$ be the heights of the tetrahedron which correspond to vertices $A_{1}, A_{2}, A_{3}, A_{4}$;
$R_{1}, R_{2}, R_{3}, R_{4} \quad$ be the distances from P to $A_{1}, A_{2}, A_{3}, A_{4}$ respectively;
$r_{1}, r_{2}, r_{3}, r_{4}$ be the distances from P to the faces opposite to $A_{1}, A_{2}, A_{3}, A_{4}$;
$b_{1} b_{2}, b_{3}, b_{4}$ be the areas of the faces of the tetrahedron which are opposite to $A_{1}, A_{2}, A_{3}, A_{4}$;
$V_{1}, V_{2}, V_{3}, V_{4}$ be the volumes $\frac{1}{3} b_{1} r_{1}, \frac{1}{3} b_{2} r_{2}, \frac{1}{3} b_{3} r_{3}, \frac{1}{3} b_{4} r_{4}$ respectively;
$\varrho_{1}, \varrho_{2}, \varrho_{3}, \varrho_{4}$ be the radii of the escribed spheres of the tetrahedron $A_{1} A_{2} A_{3} A_{4}$;
V be the volume of the tetrahedron $A_{1} A_{2} A_{3} A_{4}$.

Other notations will be given in the text.
We shall prove a number of inequalities concerning the tetrahedron which we have not found in literature.

Theorem 1. For a tetrahedron we have

$$
\begin{equation*}
\frac{R_{1}}{H_{1}}+\frac{R_{2}}{H_{2}}+\frac{R_{3}}{H_{3}}+\frac{R_{4}}{H_{4}} \geqq 3 . \tag{1}
\end{equation*}
$$

Proof. Since

$$
R_{i} \geqq \frac{V-V_{i}}{V} H_{i} \quad(i=1,2,3,4),
$$

we have

$$
\sum_{i=1}^{4} \frac{R_{i}}{H_{i}} \geqq \sum_{i=1}^{4} \frac{V-V_{i}}{V}=3 .
$$

Equality holds in (1) if and only if the tetrahedron is regular and if P is its centre.

[^0]Theorem 2. Let P be an arbitrary point inside the regular tetrahedron $A_{1} A_{2} A_{3} A_{4}$, $P_{i}(i=1,2,3,4)$ its projections on the corresponding sides of the tetrahedron, and B_{i} points on $P P_{i}$ such that $P B_{i}=\lambda P P_{i}(i=1,2,3,4 ; \lambda>0)$.

Then, if V and V^{\prime} denote the volumes of tetrahedra $A_{1} A_{2} A_{3} A_{4}$ and $B_{1} B_{2} B_{3} B_{4}$ we have

$$
\begin{equation*}
V^{\prime} \leqq\left(\frac{\lambda}{3}\right)^{3} V \tag{2}
\end{equation*}
$$

Proof. Let H be the height of $A_{1} A_{2} A_{3} A_{4}$ and $\overrightarrow{P P}_{i}=\vec{r}_{i} \quad(i=1,2,3,4)$. Then

$$
\begin{equation*}
H=r_{1}+r_{2}+r_{3}+r_{4} \text { and } V=\frac{\sqrt{3}}{8} H^{3} \tag{3}
\end{equation*}
$$

If $V^{\prime \prime}$ is the volume of the tetrahedron $P_{1} P_{2} P_{3} P_{4}$, then

$$
\begin{equation*}
V^{\prime}=\lambda^{3} V^{\prime \prime} \tag{4}
\end{equation*}
$$

since tetrahedrons $B_{1} B_{2} B_{3} B_{4}$ and $P_{1} P_{2} P_{3} P_{4}$ are homothetic with respect to homothety (P, λ).

Since

$$
\sin \Varangle\left(\vec{r}_{i}, \vec{r}_{k}\right)=\frac{2 \sqrt{2}}{3}, \cos \Varangle\left(\vec{r}_{i} \times \vec{r}_{k}, \vec{r}_{j}\right)=\frac{\sqrt{6}}{3} \quad(i, j, k=1,2,3,4 ; i \neq j \neq k \neq i),
$$

we have

$$
\begin{equation*}
V^{\prime \prime}=\frac{1}{6} \sum_{i=1}^{4}\left[\vec{r}_{i}, \overrightarrow{r_{i+1}}, \overrightarrow{r_{i+2}}\right]=\frac{2 \sqrt{3}}{27} \sum_{i=1}^{4} r_{i} r_{i+1} r_{i+2} \quad\left(r_{i+4}=r_{i}\right) \tag{5}
\end{equation*}
$$

Suppose that $r_{4}=\max r_{i}(i=1,2,3,4)$ and $r_{4}=$ const. Then, according to (3) we hawe that $r_{1}+r_{2}+r_{3}=$ const., and therefore the product $r_{1} r_{2} r_{3}$ is the greatest when $r_{1}=r_{2}=r_{3}=r$.

On the other hand

$$
2\left(r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}\right)=\left(r_{1}+r_{2}+r_{3}\right)^{2}-\left(r_{1}^{2}+r_{2}^{2}+r_{3}^{2}\right) \leqq \frac{2}{3}\left(r_{1}+r_{2}+r_{3}\right)^{2}=\text { const. }
$$

equality holding if and only if $r_{1}=r_{2}=r_{3}=r$.
Furthermore, since $r_{4} \geqq \frac{1}{4} H, r_{4}+3 r=H$, we have $r \leqq \frac{1}{4} H$, and according to (5) we find

$$
V^{\prime \prime}=\frac{2 \sqrt{3}}{27}\left(r_{4}\left(r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}\right)+r_{1} r_{2} r_{3}\right)
$$

i. e.,

$$
V^{\prime \prime} \leqq \frac{2 \sqrt{3}}{27} r^{2}\left(3 r_{4}+r\right)=\frac{2 \sqrt{3}}{27} r^{2}(3 H-8 r)
$$

or, owing to $r^{2}(3 H-8 r) \leqq \frac{1}{16} H^{3}$,

$$
V^{\prime \prime} \leqq \frac{2 \sqrt{3}}{27} \frac{H^{3}}{16}
$$

whence, by (3) and (4) we get (2).

Equality holds in (2) if and only if P is the centre of the tetrahedron. Theorem 3. Let points $A_{i k}\left(i, k=1.2,3,4 ; i \neq k ; A_{i k}=A_{k i}\right)$ divide the edges $A_{i} A_{k}$ of the tetrahedron $A_{1} A_{2} A_{3} A_{4}$ in ratio $1: \lambda$, or $\lambda: 1 \quad(\lambda>0)$. If V^{\prime} is the volume of the polyhedron with vertices $A_{i k}\left(i, k=1,2,3,4 ; i \neq k ; A_{i k}=A_{k t}\right)$, then

$$
\begin{equation*}
V^{\prime} \leqq\left(1-\frac{4 \lambda \sqrt{\lambda}}{(1+\lambda)^{3}}\right) V . \tag{6}
\end{equation*}
$$

Proof. Let

$$
\begin{equation*}
A_{i} A_{k}=a_{i k}, A_{i} A_{i k}=a_{k_{i}}, a_{k_{l}}: a_{i_{k}}=p_{k i}=\lambda\left(\text { or } \frac{1}{\lambda}\right) \tag{7}
\end{equation*}
$$

($i, k=1,2,3,4 ; i \neq k ; p_{k i} p_{i k}=1 ; k_{i}=1, \ldots, 12$). If V_{i} denotes the volume of the tetrahedron $A_{i} A_{i j} A_{i k} A_{i l}(i, j, k, l=1,2,3,4$ and mutually different), then clearly

$$
\begin{equation*}
\frac{V_{i}}{V}=\frac{a_{j_{i}} a_{k_{i}} a_{l_{i}}}{a_{i j} a_{i k} a_{i l}} . \tag{8}
\end{equation*}
$$

Taking into account (7) and (8), and using the arithmetic-geometric inequality, we have

$$
\begin{aligned}
V^{\prime} & =V-\left(V_{1}+V_{2}+V_{3}+V_{4}\right) \\
& =\left(1-\sum_{i=1}^{4} \frac{a_{j i} a_{k_{i}} a_{l_{i}}}{a_{i j} a_{i k} a_{i l}}\right) V \quad(i, j, k, l=1,2,3,4 \text { and different }) \\
& =\left(1-\sum_{i=1}^{4} \frac{1}{\left(1+p_{i j}\right)\left(1+p_{i k}\right)\left(1+p_{i l}\right)}\right) V \\
& \leqq\left(1-4\left(\prod_{i=1}^{4}\left(1+p_{i j}\right)\left(1+p_{i k}\right)\left(1+p_{i l}\right)\right)^{-\frac{1}{4}}\right) V
\end{aligned}
$$

i.e.,

$$
V^{\prime} \leqq\left(1-\frac{4 \lambda \sqrt{\lambda}}{(1+\lambda)^{3}}\right) V
$$

since $a_{i_{k}}+a_{k_{i}}=a_{i k}, \quad\left(1+p_{i k}\right)\left(1+p_{k i}\right)=\frac{(1+\lambda)^{2}}{\lambda} \quad(i, k=1,2,3,4 ; i \neq k)$.
This proves inequality (6). Equality holds in (6) if and only if $\lambda=1$, i. e., if $A_{i k}$ are midpoints of edges $A_{i} A_{k}$.

Theorem 4. For a tetrahedron we have

$$
\begin{equation*}
R_{1}+R_{2}+R_{3}+R_{4} \geqq 2 \sum_{1 \leqq i<k}^{4} \sqrt{r_{i} r_{k}} . \tag{9}
\end{equation*}
$$

Proof. Let the plane determined by P and the edge $A_{i} A_{k}$ of the tetrahedron meet its opposite edge in $A_{i k}\left(i, k=1,2,3,4 ; i \neq k ; A_{i k}=A_{k i}\right)$.

Let $A_{4} P$ meet the plane $A_{1} A_{2} A_{3}$ in A_{4}^{\prime}; the line $A_{i} A_{4}^{\prime}$ meets the corresponding side of the triangle $A_{1} A_{2} A_{3}$ in $A_{i}^{\prime}(i=1,2,3)$; furthermore, let the line which passes through A_{i} and is parallel to $A_{4} P$ meet the plane $P A_{j} A_{k}\left(i, j, k=1,2,3\right.$ and are mutually different) in $A_{i}^{\prime \prime}$.

Then

$$
\begin{equation*}
\frac{A_{4} P}{A_{i} A_{i}^{\prime \prime}}=\frac{A_{4} A_{j k}}{A_{j k} A_{i}}, \quad \frac{A_{4}^{\prime} P}{A_{i} A_{i}^{\prime \prime}}=\frac{A_{4}^{\prime} A_{i}^{\prime}}{A_{i} A_{i}^{\prime}} \quad(i, j, k=1,2,3 \text { and different }), \tag{10}
\end{equation*}
$$

If we add all the three equalities of the first set, and then all th equalities of the second set, and divide the obtained equalities we obtain

$$
\frac{A_{4} P}{P A_{4}^{\prime}}=\frac{A_{4} A_{23}}{A_{23} A_{1}}+\frac{A_{4} A_{31}}{A_{31} A_{2}}+\frac{A_{4} A_{12}}{A_{12} A_{3}} \quad\left(A_{i k}=A_{k i}\right)
$$

where it is taken into account that in the triangle $A_{1} A_{2} A_{3}$ holds

$$
\frac{A_{4}^{\prime} A_{1}^{\prime}}{A_{1} A_{1}^{\prime}}+\frac{A_{4}^{\prime} A_{2}^{\prime}}{A_{2} A_{2}^{\prime}}+\frac{A_{4}^{\prime} A_{3}^{\prime}}{A_{3} A_{3}^{\prime}}=1
$$

Therefore, we hawe
$R_{i} \geqq r_{i}\left(\frac{A_{i} A_{j l}}{A_{j l} A_{k}}+\frac{A_{i} A_{l k}}{A_{l k} A_{j}}+\frac{A_{i} A_{k j}}{A_{k j} A_{i}}\right) \quad(i, j, k, l=1,2,3,4$ and are mutually different $)$, i.e.,

$$
R_{1}+R_{2}+R_{3}+R_{4} \geqq \sum_{1 \leqq i<k}^{4}\left(r_{i} \frac{A_{i} A_{j l}}{A_{j l} A_{k}}+r_{k} \frac{A_{k} A_{j l}}{A_{j l} A_{3}}\right) \geqq 2 \sum_{1 \leqq i<k}^{4} \sqrt{r_{i} r_{k}} .
$$

Equality holds in (9) if and only if the tetrahedron is regular and P is its centre.
Theorem 5. For a tetrahedron we have

$$
\begin{equation*}
\frac{H_{1}}{\varrho_{1}}+\frac{H_{2}}{\varrho_{2}}+\frac{H_{3}}{\varrho_{3}}+\frac{H_{4}}{\varrho_{4}} \geqq 8 \tag{11}
\end{equation*}
$$

Proof. Let $b_{i}(i=1,2,3,4)$ be the areas of the corresponding faces of the tetrahedron $A_{1} A_{2} A_{3} A_{4}$. Then

$$
3 V=b_{i+1} \varrho_{i}+b_{i+2} \varrho_{i}+b_{i+3} \varrho_{i}-b_{i} \varrho_{i} \quad\left(i=1,2,3,4 ; \quad b_{i+4}=b_{i}\right)
$$

i.e.,

$$
\begin{equation*}
\varrho_{i}=\frac{3 V}{b_{i+1}+b_{i+2}+b_{i+3}-b_{i}} . \tag{12}
\end{equation*}
$$

On the orther hand

$$
\begin{equation*}
H_{i}=\frac{3 V}{b_{i}} \quad(i=1,2,3,4) \tag{13}
\end{equation*}
$$

From (12) and (13) we get

$$
\frac{H_{1}}{\varrho_{1}}+\frac{H_{2}}{\varrho_{2}}+\frac{H_{3}}{\varrho_{3}}+\frac{H_{4}}{\varrho_{4}}=\sum_{i=1}^{4} \frac{b_{i+1}+b_{i+2}+b_{i+3}-b_{i}}{b_{i}}
$$

i. e.,

$$
\sum_{i=1}^{4} \frac{H_{i}}{e_{i}} \geqq 4\left(\frac{\prod_{i=1}^{4}\left(b_{i+1}+b_{i+2}+b_{i+3}\right)}{b_{1} b_{2} b_{3} b_{4}}\right)^{\frac{1}{4}}-4 \geqq 8
$$

where we have twice used the arithmetic-geometric mean inequality.

Equality holds in (11) if and only if $b_{1}=b_{2}=b_{3}=b_{4}$, i. e., if the tetrahedron is equifacial.

Theorem 6. If ϱ is the radius of the inscribed sphere of the tetrahedron $A_{1} A_{2} A_{3} A_{4}$, then

$$
\begin{equation*}
\varrho_{1}+\varrho_{2}+\varrho_{3}+\varrho_{4} \geqq 8 \varrho . \tag{14}
\end{equation*}
$$

Proof. Since

$$
\varrho=\frac{3 V}{b_{1}+b_{2}+b_{3}+b_{4}}, \quad \varrho_{i}=\frac{3 V}{b_{i+1}+b_{i+2}+b_{i+3}-b_{i}},
$$

we have

$$
\frac{2}{\varrho}=\frac{1}{\varrho_{1}}+\frac{1}{\varrho_{2}}+\frac{1}{\varrho_{3}}+\frac{1}{\varrho_{4}}
$$

and, using the arithmetic-harmonic mean inequality, we obtain (14).
Equality holds in (14) if and only if the tetrahedron is equifacial.
Theorem 7. For a tetrahedron we have

$$
\begin{equation*}
\sum_{1 \leqq i<k}^{4} \frac{1}{\varrho_{i} \varrho_{k}} \leqq 6 \sum_{i=1}^{4} \frac{1}{H_{i}{ }^{2}} . \tag{15}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
\sum_{1 \leqq i<k}^{4} \frac{1}{\varrho_{i} \varrho_{k}} & \leqq \frac{3}{2} \sum_{i=1}^{4} \frac{1}{\varrho_{i}{ }^{2}} \\
& =\frac{3}{2} \sum_{i=1}^{4}\left(\frac{b_{i+1}+b_{i+2}+b_{i+3}-b_{i}}{3 V}\right)^{2} \\
& =\frac{2\left(b_{1}{ }^{2}+b_{2}{ }^{2}+b_{3}{ }^{2}+b_{4}{ }^{2}\right)}{3 V^{2}} \\
& =6 \sum_{i=1}^{4} \frac{1}{H_{i}{ }^{2}},
\end{aligned}
$$

which proves inequality (15).
Equality holds in (15) if and only if the tetrahedron is equifacial.
Theorem 8. If G is the centroid, O the centre and R the radius of the circumscribed sphere and $d=G O$, we have

$$
\begin{equation*}
A_{1} G+A_{2} G+A_{3} G+A_{4} G \leqq 4\left(R^{2}-d^{2}\right)^{\frac{1}{2}} \tag{16}
\end{equation*}
$$

Proof. Steiner's theorem reads: if G is the centroid of the points A_{1}, \ldots, A_{n} and O is arbitrary then

$$
\sum_{i=1}^{n} A_{i} O^{2}=\sum_{i=1}^{n} A_{i} G^{2}+n \cdot O G^{2}
$$

In virtue of the above theorem, we have

$$
\begin{align*}
A_{1} G^{2}+A_{2} G^{2}+A_{3} G^{2}+A_{4} G^{2} & =O A_{1}^{2}+O A_{2}{ }^{2}+O A_{3}{ }^{2}+O A_{4}{ }^{2}-4 G O^{2} \tag{17}\\
& =4\left(R^{2}-d^{2}\right)
\end{align*}
$$

Using (17) and the arithmetic-quadratic mean inequality, we find

$$
\begin{aligned}
A_{1} G+A_{2} G+A_{3} G+A_{4} G & \leqq 2\left(A_{1} G^{2}+A_{2} G^{2}+A_{3} G^{2}+A_{4} G^{2}\right)^{\frac{1}{2}} \\
& \leqq 4\left(R^{2}-d^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

Equality holds in (16) if an only if the tetrahedron is equifacial.
Remark. A more general proposition also holds: if G is the centroid of the polyhedron $A_{1} A_{2} \ldots A_{n}, R$ radius of the smallest circumscribed sphere, d the distance from G to the centre O of that sphere, we have

$$
\sum_{i=1}^{n} A_{i} G \leqq n\left(R^{2}-d^{2}\right)^{\frac{1}{2}}
$$

In this case identity (17) reads

$$
\sum_{i=1}^{n} A_{i} G^{2}=\sum_{i=1}^{n} A_{i} O^{2}-n \cdot O G^{2}
$$

Theorem 9. If L is the sum of the edges and R the radius of the circumscribed sphere of the tetrahedron $A_{1} A_{2} A_{3} A_{4}$, then

$$
\begin{equation*}
L \leqq 4 \sqrt{6} R . \tag{18}
\end{equation*}
$$

Proof. Let $G_{i}(i=1,2,3,4)$ be the centroids of the corresponding faces, O the centre of the circumscribed sphere and G the centroid of tetrahedron $A_{1} A_{2} A_{3} A_{4}$. Then, by Steiner's theorem we have

$$
\begin{equation*}
\sum_{k=1}^{3} A_{i} A_{i+k^{2}}=\sum_{k=1}^{3} G_{i} A_{i+k}^{2}+3 A_{i} G_{i}^{2}, \quad\left(i=1,2,3,4 ; A_{i+4}=A_{i}\right) \tag{19}
\end{equation*}
$$

wherefrom we obtain

$$
\begin{equation*}
\sum_{i=1}^{4} A_{i} G^{2}=\frac{1}{4}\left(\sum_{1 \leqq i<k}^{4} A_{i} A_{k}^{2}\right) \tag{20}
\end{equation*}
$$

since $A_{i} G=\frac{3}{4} A_{i} G_{i}(i=1,2,3,4)$.
On the other hand again by Steiner's theorem,

$$
\sum_{i=1}^{4} O A_{i}^{2}=\sum_{i=1}^{4} A_{i} G^{2}+4 G O^{2}
$$

i. e., owing to (20)

$$
\begin{equation*}
16 R^{2}=\sum_{1 \leqq i<k}^{4} A_{i} A_{k}^{2}+16 G O^{2} \tag{21}
\end{equation*}
$$

Since

$$
G O \geqq 0 \text { and } \sum_{1 \leqq i<k}^{4} A_{i} A_{k}^{2} \geqq \frac{1}{6} \cdot L^{2}
$$

from (21) follows (18).
Equality holds in (18) if and only if the tetrahedron is regular.
Theorem 10. If $t_{i}(i=1,2,3,4)$ are medians of tetrahedron $A_{1} A_{2} A_{3} A_{4}$ and R radius of the circumscribed sphere, then

$$
\begin{equation*}
t_{1}+t_{2}+t_{3}+t_{4} \leqq \frac{16}{3} R \tag{22}
\end{equation*}
$$

Proof. If we replace $A_{i} G$ by $\frac{3}{4} A_{i} G_{i}(i=1,2,3,4)$ in (20) we get

$$
\begin{equation*}
\sum_{i=1}^{4} A_{i} G_{i}^{2}=\frac{4}{9} \sum_{1 \leqq i<k}^{4} A_{i} A_{k}^{2} \tag{23}
\end{equation*}
$$

i. e., by (21)

$$
\begin{aligned}
16 R^{2} & =\frac{9}{4} \sum_{i=1}^{4} A_{i} G_{i}^{2}+16 G O^{2} \\
& \geqq \frac{9}{16}\left(t_{1}+t_{2}+t_{3}+t_{4}\right)^{2}
\end{aligned}
$$

which implies (22).
Equality holds in (22) if and only if the tetrahedron is equifacial.
Theorem 11. If R is the radius of the circumssribed sphere of the tetrahedron $A_{1} A_{2} A_{3} A_{4}$ and $A_{i} A_{k}=a_{i k}\left(i, k=1,2,3,4 ; i \neq k ; a_{i k}=a_{k i}\right)$, then

$$
\begin{gather*}
V \leqq \frac{\sqrt{6}}{108}\left(a_{14} a_{23}+a_{24} a_{31}+a_{34} a_{12}\right)^{\frac{3}{2}}, \tag{24}\\
V \leqq \frac{\sqrt{3}}{216}\left(\sum_{1 \leqq i<k}^{4} a_{i k}^{2}\right)^{\frac{3}{2}} \\
V \leqq \frac{8 \sqrt{3}}{27} R^{3} .
\end{gather*}
$$

Proof. Let Q be the area of the triangle whose sides are $a_{14} a_{23}, a_{24} a_{31}$, $a_{34} a_{12}$; then, by the Crelle-von Staudt formula, we have

$$
\begin{equation*}
V=\frac{Q}{6 R} . \tag{27}
\end{equation*}
$$

Since

$$
12 \sqrt{3} Q \leqq\left(a_{14} a_{23}+a_{24} a_{31}+a_{34} a_{12}\right)^{2}
$$

and, according to (21)

$$
\begin{equation*}
4 R \geqq\left(\sum_{1 \leqq i<k}^{4} a_{i k}^{2}\right)^{\frac{1}{2}} \geqq 4\left(a_{14} a_{23}+a_{24} a_{31}+a_{34} a_{12}\right)^{\frac{3}{2}} \tag{28}
\end{equation*}
$$

using (27), we have

$$
V \leqq \frac{\sqrt{6}}{108}\left(a_{14} a_{23}+a_{24} a_{31}+a_{34} a_{12}\right)^{\frac{3}{2}}
$$

This proves inequality (24).
Since

$$
2 a_{i k} a_{j l} \leqq a_{i k}^{2}+a_{j l}^{2} \quad(i, j, k, l=1,2,3,4 \text { and different })
$$

(25) follows immediately from (24).

Inequality (26) follows from (25), by virtue of (28).
Equality holds in all inequalities (24), (25) and (26) if and only if the tetrahedron is regular.

Professer O. Bottema has been kind enough to read the manuscript, has given a number of remarks and suggestions which have improved the text, for which the author is very thankful.

Katedra za matematiku
 Elektrotehnički fakultet
 Beograd, Jugoslavija

[^0]: *) Presented May 18, 1970 by D. S. Mitrinović and R. R. Janić.

