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327. SOME INEQUALITIES CONCERNING A TETRAHEDRON*

Gojko Kalajdzic

Notations

Let P be a point inside the tetrahedron AIA2A3A. and let

'3' '.
b3, b.

be the heights of the tetrahedron which correspond to vertices AI, A2, A3,A.;

be the distances from P to AI, A2, A3, A. respectively;

be the distances from P to the faces opposite to Ap A2, A3, A.;

be the areas of the faces of the tetrahedron which are opposite to
AI, A2, A3, A.;

HI, H2, HJ> H.

RI, R2, R3, R.

1 1 1 1
be the volumes - bl '1' - b2 '2' - b3 '3' - b.,. respectively;

3 3 3 3

be the radii of the escribed spheres of the tetrahedron AIA2A3A.;

v

Other notations will be given in the text.

We shall prove a number of inequalities concermng the tetrahedron
which we have not found in literature.

Theorem 1, For a tetrahedron we have

~ +
R2

+
R3

+ R. ;;;;3.
HI H2 H3 H.

(1)

Proof. Since

(i= 1,2,3,4),

we have

Equality holds in (1) if and only if the tetrahedron is regular and if P
is its centre.

*) Presented May 18, 1970 by D. S. MITRINOVICand R. R. JANIC.
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Theorem 2. Let P be an arbitrary point inside the regular tetrahedron AIA2A3A4'
Pt (i = 1, 2, 3, 4) its projections on the corresponding sides of Ihe tetrahedron,
and Bi points on PPi such that PBt = )"PPt (i = 1, 2, 3, 4; ),,>0).

Then, if V and V' denote the volumes of tetrahedra AIA2A3A4 and
BIB2B3B4 we have

(2)

--+ .....
Proof. Let H be the height of AIA2A3A4 and PPt = ri (i = 1, 2, 3, 4).
Then

(3) H=rl+r2+r3+r4 and V=
y]

H3.
8

If V" is the volume of the tetrahedron P1P2P3P4, then

(4) V' =),,3 V",

since tetrahedrons BIB2B3B4 and PIP2P3P4 are homothetic with respect to ho-
mothety (P, ),,).

Since
. 2V2 -+ V6

Slll<t(ri,rk)=-, cos<t(rtxrk, rj)=- (i,j,k=I,2,3,4;i=f.j=f.k=f.i),
3 3

we have

"
1 4 -> 2yJ 4

V =- L: [rt, rHI, ri+2]=-- L: rtri+1 rH2
6 i=1 27 ;=\

Suppose that r4= max rt (i = 1, 2, 3, 4) and r4= const. Then, according
to (3) we hawe that rl + r2+ r3= const., and therefore the product rl r2 r3 is
the greatest when r\ = r2= r3= r.

On the other hand
2

2(rl r2+ r2r3+ r3r\) = (rl + r2+ r3)2-(r\2 + r22+ rl);;;; - (rl + r2+ r3)2= const.,
3

equality holding if and only if rl = r2= r3= r.

Furthermore, since r4~~H, r4+3r=H, we have r;;;;~ H, and according
4 4

(5)

to (5) we find

1. e.,

1
or, owing to r2(3H-8r) ;;;;-H3

16 '

V" s; 2 y] H3

- 27 16

whence, by (3) and (4) we get (2).
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Equality holds in (2) if and only if P is the centre of the tetrahedron.

Theorem 3. Let points Au:(i, k= 1. 2, 3, 4; i;/=-k; Aik=Akt) divide the edges
AtAk of the tetrahedron AIA2A3A4 in ratio 1 : A., or A.:1 (A.>O). If V' is the
volume of the polyhedron with vertices Atk (i, k = 1, 2, 3, 4; i;/=-k;Atk = Akt), then

(6) V'~ (l-
411V1 )v.
(1 + 11)3

(7)

Proof. Let

AtAk=aik, AtAtk=ak;' ak; :a;k=Pkt=A. (or ~),

(i, k= 1,2,3,4; i;/=-k; PktPtk= 1; ki= 1, ..., 12). If Vt denotes the volume
of the tetrahedron At AijAtkAiZ (i, j, k, 1= 1, 2, 3, 4 and mutually different),
then clearly

(8)

Taking into account (7) and (8), and using the arithmetic-geometric ine-
quality, we have

(i, j,k,l= 1,2,3,4 and different)

= (1- i 1 )V
;=1 (I +PiJ) (1 +Pik) (1 +PH)

~ (1-4
(D

(1 + ptj)(l + ptk)(1 + Pi/))-+) V,

i. e.,

V' ~ (1-
4AvlJ:)V
(1 + 11)'

since a;k + ak; = atk, (1 +ptkHI +Pkt) =
(1 +1111)2(i, k = 1, 2, 3, 4; i;/=-k).

This proves inequality (6). Equality holds in (6) if and only if A.= 1,
i. e., if Aik are midpoints of edges AtA".

Theorem 4. For a tetrahedron we have

(9)
4

RI+R2+R3+R4~2 L: yr,r".
1:;;;i<k

Proof. Let the plane determined by P and the edge A, A" of the tetra-
hedron meet its opposite edge in A,,, (i, k = 1, 2, 3, 4; i;/=-k; At" = Ak,).

.

Let A4 P meet the plane Al A2A3 in A~; the line At A~ meets the cor-
responding side of the triangle AtA2A3 in A; (i = 1, 2, 3); furthermore, let
the line which passes through A, and is parallel to A4P meet the plane
PAj A" (i, j, k = 1, 2, 3 and are mutually different) in A;'.
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Then

(10)
A4P A4Aj/c

Ai A;' =Aj/cAi'
(i,j, k= 1, 2,3 and different),

If we add all the three equalities of the first set, and then all th equ-
alities of the second set, and divide the obtained equalities we obtain

where it is

A. P A. A23 A. A3t A. AI2
-,=-+-+-
P A4 A23 Al A3t A2 AI2 A3

taken into account that in the triangle A1AzA3 holds

A~A~ A~A; A~ A~
--, + ,-+ , = 1.
AIA1 A2A2 A3A3

(i, j, k, 1= 1,2, 3,4 and are mutually different),

I. e.,

Equality holds in (9) if and only if the tetrahedron is regular and P is
its centre.

Theorem 5. For a tetrahedron we have

(11) Ht
+

H2
+

H3
+

H. G 8.
el e2 e3 e.

Proof. Let bi (i = 1, 2, 3, 4) be the areas of the
the tetrahedron A1Az A3A4' Then

3 V = bi+1 12i + bi+z 12i + bi+3 12i-bi 12i

corresponding faces of

(i = 1, 2, 3, 4; bi+4= bi),
1.e.,

(12)

(13)

From

On the orther hand
3V

Hi=- b,
(12) and (13) we get.

HI ~ H2 +'H3+ H.
= i bi+1 +b'+2+bi+3-bi

!!t . !12 . e3 e. ;=lb,

(i=:" 1, 2, 3, 4).

1.e.,

4 H

[

Ii (bi+t + bi+2

.

+ bi+3)

J

~
L --2.G4 ;=1 -4 G 8,

;=1 ei b.t b2 b3 b.

where we have twice used the arithmetic-geometric' mean inequality.
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Equality holds in (I I) if and only if bl = b2= b3= b4, i. e., if the tetra-
hedron isequifaciaI.

Theorem 6. If (! is the radius of the inscribed sphere of the tetrahedron
AIA2A3A4' then

(14)

Proof. Since

we have
21111

-=-+-+-+-,
e ~b !h eJ e.

and, using the arithmetic-harmonic mean inequality, we obtain (14).
Equality holds in (14) if and only if the tetrahedron is equifaciaI.

Theorem 7. For a tetrahedron we have

(15)

Proof. We have

=
2(b12 + bl + bl + b.2)

3V2

4
=6 '" -

i~ Hl'

which proves inequality (15).
Equality holds in (15) if and only if the tetrahedron is equifaciaI.

Theorem 8. If G is the centroid, 0 the centre and R the radius of the circum-
scribed sphere and d=GO, we have

(16)
I

AIG + A2G + AP + A4 G ~ 4 (R2-d2?

Proof. STEINER'S theorem reads: if G is the centroid of the points
AI, , , , , An and 0 is arbitrary then

n n

L: At02= L: AtG2+n.OG2,
;=1 ;=1
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(17)

In virtue of the above theorem, we have

Ai G2 + A2 G2 + A3 G2 + A4 G2
= OA12 + OAl + OAl + OAl-4 G02

= 4 (R2-d2).

Using (17) and the arithmetic-quadratic mean inequality, we find

1

Ai G + A2 G + A3G + A4 G ~ 2 (Ai G2+ A2 G2+ A3 G2+ A4 G2)
2"

1

~4(R2-d2)2".

Equality holds in (16) if an only if the tetrahedron is equifacial.

Remark. A more general proposition also holds: if G is the centroid of the polyhedron
Al A2 . ..An' R radius of the smallest circumscribed sphere, d the distance from G to the
centre 0 of that sphere, we have

n 1

2: AjG~n(R2-d2)2"o

;=1

In this case identity (17) reads

n n

2:
AjG2=

2:
Aj02-n.OG2.

;=1 ;~1

Theorem 9. If L is the sum of the edges and R the radius of the circumscribed
sphere of the tetrahedron A1A2A3A4' then

(18) L~4 y6R.

Proof. Let Gt (i = I, 2. 3, 4) be the centroids of the corresponding faces,
o the centre of the circumscribed sphere and G the centroid of tetrahedron
A1A2A3A40 Then, by STEINER'Stheorem we have

3 3

2: AtA;+k2= 2: GtA;+k2+ 3At Gt2,
k=l k=l

wherefrom we obtain

(19)

(20)

3
since A&G=-AjGj (i= 1,2,3,4).

4
On the other hand again by STEINER'S theorem,

4 4

2: OAj2= 2: At G2+ 4 G02,
;-1 ;=1

i. e., owing to (20)

(21) . 16R2 =
4

2: ~Ai+16G02.
l;;i;;<k



Some inequalities concerning a tetrahedron 57

Since

GO;;;;;O and

from (21) follows (18).
Equality holds in (18) if and only if the'tetrahedron is regular.

Theorem 10. If tt (i = 1, 2, 3, 4) are medians of
R radius of the circumscribed sphere, then

16
t1+ t2+ t3+ t4;;;;;-R.

3

Proof. If we replace At G by ~ AtGt (i = 1, 2, 3, 4) in (20) We get
4

(22)

(23)

1.e., by (21)

which implies (22).
Equality holds in (22) if and only if the tetrahedron is equifacial.

Theorem 11. If R is the radius of the circums~ribed sphere of the tetrahedron
A1A2A3A4 and At Ale= atle (i, k = 1, 2, 3, 4; i#k; atle= alet), then

(24)

(25)
4

3

V ~ y'3 ( '" . 2)2
- L. a,k ,

216 1 ;;;;i<k

(26)

Proof. Let Q be the area of the triangle whose sides are 014023' a24a31,
a34a12; then, by the CRELLE-von STAUDTformula, we have

(27) v=iL.
6R

Since

(28)
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using (27), we have

This proves inequality (24).

Since

2atkaj! ~ ail: + a/ (i, j, k, 1= L 2, 3, 4 and different),

(25) follows immediately from (24).
Inequality (26) follows from (25), by virtue of (28).
Equality holds in all inequalities (24), (25) and (26) if and only if the

tetrahedron is regular.

*

* *
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