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326. ON AN INEQUALITY*

Gojko Kalajdzic

Theorem. If ai, . . . , an are real positive numbers, and if PI' . . . , Pn are real
nonnegative numbers, and if b> 1, then

(1)

where L denotes the summation over all permutations
p(n)

set {I, . . . , n}.
Equality holds in (1) if and only if a1= . . . = an or

to zero, except perhaps one of them.

of the

if all Pi are equal

Proof. Let us first prove the inequality

(2)

where b> 1, Xi;;;;0, Yi;;;;0, Xl + X2;;;;YI + Y2' max (Xi) ~ max (Yi)
i i

(i= 1,2).

In the opposite case we would have

i. e., supposing that X2;;;;XI'

and thus

i. e.,
(bX2- bY2) (bX2- bY')<O

~hich is absurd, since X2;;;;max (YI' Y2) and b> 1. This proves inequality (2).

*) Presented May 8, 1970 by D. S. MITRINOVICand S. KUREPA.
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48 G. Kalajdiic

As the inequalities

max (a PI+P2) ~ max (a PI aP2 a P2 a PI)
k - t 2' 1 2'k

(k= 1,2)

can be easily proved we can put in (2)

(i, j = 1, 2; i =1=j),

which implies (1) for n = 2.
Suppose that (1) holds for a natural number n>2, and let us prove

that it holds for n + 1.
Putting qs = Ps (s = 1, . . . , n - 1), qn = Pn + Pn+l, then, by the hypothesis

we have

(3)
( qk qk

"
a. I... Ui n)

L. b 'I n,
q (n)

ij =1= i; il < i2 < . . . < in, and 2: hasq(n)
where ij = 1, . . . , n + 1; i = 1, . . . , n + 1;

the same meaning as before {I, . . . , n}.
Adding all the n + 1 inequalities (3) we find

(4)

On the right hand side in (4) we have (n + I)! summands; consider one
of them

( qk, qkr qk
Q; . . . a. . . . a. n)

X = b I 'r 'n,

and let qk = Pk , qk = Pn + Pn+1 (ks, kr = 1,
"

. , n; ks=l=kr).
s s r

Then clearly there is one and only one summand Y on the right in (4)
whose representation is different from the represantation of X only in that
air is replaced by at, where {i} = ({I, . . . , n+ I}"" g, . . . , in}};denotestheircom-
mon part by B; since inequality (1) was proved for n=2, the sum of the
above summands X and Y can be minorized by

(5')

1. e.,

(5)

But, (kl' . . . , kn+l) and (SI, . . . , sn+l) are two different permutations <>f
the set {I, ... , n+ I}, (actually, they differ in that nand n+ 1 have changed
places).
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If among all the summands on right of (4) we pair off the correspon-
ding ones, like X and Y, and use (5), we shall obtain (n + I)! summands of
the form

where (kl' . . . , kn+l) is the permutation of the set {I, . . . , n + I} .
From the construction of these permutations and the fact that among

the permutations q(n) there no equal one, it follows that all the permutati-
ons are mutually different, and since there are (n + I)! of them, it means
that exhaust the set of all permutations of {I, . . . , n + I}.

This fact, together with (4), yields (1) for n + l.
We immediately conclude that equality holds in (1) if a1= . . . = an or

PI = . . . = Pn= O. Let us now. prove that equality can also hold only in the
case when one the p/s is not zero.

First, from the proof of (1) for n = 2 we deduce that the above asser-
tion holds for n = 2. Suppose that it is true for some n> 2, and let us prove
that it holds for n + 1.

Without loss of generality we can suppose that pn:f=O; namely, in the
construction of (3) we could have taken qn = Pi + Pk (i, k = 1, . .. , n + 1; i:f=k),
and not qn = Pn + Pn+l as we have done for symmetry's sake.

Therefore, all the qi' S except qn are equal to zero, and owing to the
inductive hypothesis equality holds in (3) for all i E {I, . . . , n + I}; which means
that equality will hold also in (4) under the above conditions.

Furthermore, suppose that not all ai's are equal; otherwise equality
would hold directly in (1). Suppose that two of them are not equal.

Consider on the right hand side of (4) those summands X and Y so
aj and ai whose exponents in X and Yare qn = Pn + Pn+l are the mentioned
p~ir of a/so Clearly they are uniquely determined.

As we have proved that equality holds in (4), in order that it holds in
(1) for n + 1, it must hold in (5'), i.e., in (5).

Howerer, (5') coincides with (1) for n = 2, and equality will hold in (5')
if and only if aj = at or if at least one of Pn and Pn+l is equal to zero.r
By the hypothesis, ai :f=ai and Pn:f=O, which means that Pn+l = O.

r
This completes the proof.

Remark 1. Analogously we can prove the somewhat simpler inequality

n
n ~ Pk 1

L:
a.k~1 ~-)' a Pkl . . . a P"n

i=1
I -(n-I)!

p(;')
, n'

under the some conditions which where supposed in (1).

(1')

EXAMPLE 1. Putting in (1') Pk= 1 (k~ 1, ..., n), we obtain the arithmetic-geometric mean ine-
quality for n positive numbers
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EXAMPLE 2. Since (1') holds for every p;;;;;;;O (i=l, ..., n), putting p;=kq; (i=I,
''',

n;
k=O, 1, ...) and (1') in summing these inequalities with respect to k, with 0<0;<1
(i= 1, . . . , n), we get . .

nil

2: -~;;;;;;(n-l)1 2:
i=1 1: qk . q(n)

k=1
l-ai

Remark 2. Putting in (1) PHI = .. . = Pn = 0 (1 ~k~n), then

k
1: Pj .n ( j=l) (n-k) I (P'I Ptk)

2: b ai ::2: = 2: 2: b aCI . .. ack

i=1
-(n-l)! C(k) p(k)

where 2: denotes the sum over all the combinations (Cl"'" CTc) of k-th order of the
C(k)

set {I, . . . , n}.

*
* *

This Note has been read by Dr. P. M. VASIC and Dr. D. D. ADAMOVIC
and the author is indebted to them for their valuable comments..
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