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322. THE GENERATING FUNCTION FOR VARIATIONS WITH
RESTRICTIONS AND PATHS OF THE GRAPH AND

SELF-COMPLEMENTARY GRAPHS *
Dragos M. Cvetkovic

In this paper the generating function for the numbers of variations with repeti-
tions and a certain type of restrictions is determined. The variations in question
are connected with paths in correspondent graph, so that the generating fun-
ction for the numbers of paths in a graph is also given. Theorem 2. gives
this function for complementary graph and for the sum and product of graphs.
Finally, a spectral characteristic of self-complementary graph is given.

1. Variations with restrictions

Variation of the k-th class (also called: permutat;ons k at a time) with
repetitions of the set X = {Xl' . . . , xn} is every ordered k-tuple (Xi". . . , Xik)
where it need not be Xij=l=Xif'The number of such variations is V~ =nk.

During the formation of variations wi1h repetitions it is possible to impose
certain restrictions. In this article we shall consider variations with restrictions
of the following type. For every Xi E X, set X is decomposed into two dis-
joint sets Xii and Xi2. In permitted variations there can appear after element
Xi, which is not the last in that variation, only an element from the set Xii,
The first element is subjected to no restrictions.

A pair Xi, Xj of adjacent elements of a variation is called a permitted
pair if and only if Xj E Xii, The square matrix A = II aij

1\ ~, where atj = I if
Xi, Xj is a permitted pair and atj= 0 otherwi~e, is cakd the matrix of
permitted pairs. A will denote the matrix obtained from A by interchanging 0
and I. A is the matrix of restrictions.

We shall determine the number V;(A) of variations with repetitions of
k-th class of a set with n elements, wi1h a given matrix of permitted pairs.

If A is interpreted as the adjacency matrix of graph G with vertices

XI' . . ., Xn, it can easily be seen that the number V; (A) is equal to the num-
ber of all paths of length k-l in G. (Under "path of length k" we understand
a sequence Uj,. . . , Uk of the lines of the graph, where it is not necessary that
Ut=1=Uj and where for i = 2, 3,..., k the line Uj starts from that vertex in which

* Presented February 5, 1970 by H. SACHS(Germany).
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Ui""'j;wtmina.tes. Kline can be a loop. In case of undirected graphs every edge
is.' to pe replaced. witl1. two. lines with mutually opposed orientations.)

It is known that the number of patsh of length k is determined by the
use of the matix Ale'. Na.m~ly, 'the elem~nt from the i-th row and j-th cb~
lumn of this matrix is equal to the number of paths of length k, which lead
from the vertex XI to the vertex xi (see, for example, [I], p. 143).

If {Y} denotes the sum of all elements of the matrix Y then
V: (A) = {Ak-q (k= 1, 2,...).

This, at least in principle, solves the question of the number of varia-
tions. However, when the order of A is high, expression (1) is unsuitable for
practical calculations. We shall, therefore, starting from (I), deduce expressions
which are more suitable in applications.

It is possible to deduce an explicit expression for V: (A).
Let <p(A)=boAm+bjAm-I+... +bm be minimal polynomial of A. Then

boAm+1c+. . . +bmAk=O.

Introducing the notation NI = {Ai}, (2) yields

boNm+k+ . . . +bmN,,=O.
Let AI"'" Am be the zeros of the minimal polynomial !p(A). If we consi-

der undirected graphs (A is, in that case, a symmetric matrix) these zeros are
real and simple (see, for example, [2], p. 222). The solution of the difference
equation (3) is, in that case, of the form

(1)

(2)

(3)

(4) 1 k 1 k -k+t
Nk = CI At +... + Cm Am = V n

(A).

Constants Ct,..., Cm can be determined if m quantities No = n, Nj,. . . ,
N m-j are known.

As can be seen, lengthy calculations are here also necessary. Formula (4)
is not useful if we are determining Nk for k<m. Besides, quantities Cj and Ai
are often irrational numbers (Nk is, of course, a natuaral number), which can imply
numerical difficulties.

In connection with (4) we give a definition of the main part of the
spectrum of the graph. The set of all the eigenvalues of adjacency matrix is
called the spectrum of graph.

For the undirected graphs we define the main part of the spectrum of
the graph. The main part of the spectrum contains all the eigenvalues
Ai (i = 1, . . . , m) of the matrix A, which appear in the expression (4) and for
which Ci *0. In the main part of the spectrum all the eigenvalues are mutually
distinct.

The other way of transforming the expression (1) uses the following formula
from complex analysis (see, for example, [3], p. 119.)

(5) f(A) = -~ J:fez) (A -ZI)-I dz.2m j
C

This formula holds if the function fez) and necessary number of its
derivatives are defined on the spectrum of matrix A, where C is a simple
contour containing the mentioned spectrum, and I is the unit matrix.



The generating function for variations with restrictions. .. 29

According to (1) and (5) we have

-k 1 .JV n (A) = - 2ni :r
zk-l{ (A-ZI)-l} dz.

c .
(6)

Let Py(A) be the characteristic polynomial of matrix Y, i.e., P yeA) =
det (Y-Al). .

The following formula holds (see, for example, [4], p. 84):

det (Y + tJ) = det Y + t{adj Y}(7)

where t is a scalar and J is a square matrix whose elements are 1.

From (7), for Y=A-zI and t= -I, we get

{adj (A-zl)} =det (A-zl)-det (A-zI-J)=det (A-zl)

-( - l)n det (J- A + zI) = det (A-zI)-( - I)n det (A + zI)

= PA(z)-( - I)n PAC-z).

According to (6) and (8) we have

-V k (A) 1
f

Zk-I { d
"
(A I)} d

1

f k- l PA(z)-(-l)n P;j(-z)
d=-- - aJ -z z=-- z - Zn

2ni PA(z) 2ni PA(Z)
,

C C

1. e.,

(8)

(9)

Calculation of integral (9) by the theorem of residues again yields re-
lation (4). In this way we obtain at the same time coefficients Ci from (4).

However, it is possible to avoid calculating an integer by the use of ir-
rational numbers.

The function PA~z)
= R (z) can be developed in the vicinity of z = 00 into

P A (z)

a series of the form R (z) = y Hi. This expression holds outside every circle
i~O zi

!z1=T, which contains the spectrum of matrix A. (9) now becomes

(10) dz=(-I)" Hk'

This actually proves the following

Theorem 1. The function

(11)



30 D. M. Cvetkovic

is generating function for the numbers vZ (A) of the variations of k-th class with
repetitions and with the matrix of permitted pairs A, where the following rela-
tion holds

(12) (k = I, 2, . . .).

For k = 0 one obtains V~ (A) = 1.

The MACLAURINseries of a rational function can be obtained by dividing
the polynomial in numerator by the polynomial in denominator, where one
always divides the lowest powers of these polynomials. Since the coefficients
of the mentioned polynomials are integers, the process of calculating the num-
ber of variations does not lead outside the set of integers. In certain cases cal-
culating by use of the generating function is more economic than the direct
application of formula (I).

2. Paths in the graph

+00
From (1) and (12) it follows, that the generating function Ha(t) = L Nk tic

k=O

for the numbers NIc of the paths of the lengths k, of the graph G, with the
adjacency matrix A, is given by the expression

(13) H (t)=~

[

(-l)n
PA( -+)

1

1

.G t

( 1 )PA -
t

This expression holds in the most general case, i. e.. G can have loops
and multiple edges. In the further text we shall uEderstand, that G is an undi-
rected graph without loops and multiple edges. G denotes the graph comple-
mentary to the graph G, and G' the graph, which can be obtained, if to each
of the vertices of G one loop is added. The adjacency matrix of the graph
G is A-I, and of G' is A+I.

We consider also the following type of sum and product of two undi-
rected graphs G1 and G2, without loops and multiple edges.

The graph G1 + G2 contains all the vertices and all the edges of the
graphs G1 and G2, and only them.

The graph G1x G2 one obtains from the graph G1+ G2, if each of the
vertices of G1 is joined by one edge with each of the vertices of G2.

This sum and product were considered in [5]. According to this paper,
a graph is called elementary if it is connected and cannot be represented as
the product of two disjoint graphs, Clearly,

(14)
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From the obvious relation

(I 5)

and from (13) one obtains the following form of the generating function:

(I 6)

l

p- (-~~ )

1

1 G t
HG(t)=i (-I)n~:) -1 .

Theorem 2. For the generating function HG(t) for the numbers of paths of
The graph G the following formulas hold:

(17)

(18)

(19)

(20)

HGt+G2(t) = HGt(t) +HG2(t),

HG, x G2(t) =
HGt(t) +HG2(t) +2t HGt(t) HG2(t) .

I-t2 HG,(t) HG2(t)

Proof. According to (13) and (I5) we have

=1-t -

I-t

PJ-A

[

- : -

]I-t
(_l)n

PA

r

~

]

-1

I-t

which proves (17).
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(18) can be directly verified if one uses (16) and the folowing, its ana-
logous, formula:

The relation (19) is obvious.
For the proof of the relation (20), one uses the relations (14), (18) and

(19):

(21)

From (18) one obtains

(22) ( t )
(t+ l)H G(t)

HG -
t + 1 =

1 +t H G(t)

Using (22) from (21) one obtains (20).

EXAMPLES.According to Theorem 2, the generating function for every graph can be obtai-
ned if we know the generating functions for the elementary graphs. A regular graph of the
degree m, with n vertices, has, obviously N Ie= nmle paths of the lengths k, and therefore

+00 n
HG(t)= L nmletle=-.

k=O I-mt

For m = n-I one obtains the complete graphs and for m = 0 the graph, which con-
tains only isolated vertices. The graph, which has only one vertex without edges and loops,
has the generating fuction of the form Hdt) ~ 1.

The bicomplete graph Kn" nz can be represented as the product of graphs
G! and G2, both of which contain only isolated vertices. We then have
H G1(t) = n! and H Gz(t) = n2, and according to (20), for the bicomplete graph
we have

(23)

(24)

Specially, for n! = nand n2= I the con:idered graph represents a star and
corresponding generating function is

(25) H K (t) =
n + I + 2nt .n,! l-ntZ
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3. Self - complementary graphs

The graph G is called self-complementary, if it is isomorphic to its com-
plementary graph G. Then we have Pc(t) = Pdt) "and the generating function
of the numbers of paths reads

(26)

From this expression the spectral characteristic of the self-complemen-
tary graphs can be derived, given by the following theorem.

Theorem 3. Let G be a self-complementary graph and Ai an
its spetcrum, of the multiplicity Pi(> 1), (if it exists). Then
corresponds another eigenvalue Aj, whose multiplicity is not
where Ai+ Aj= - 1.

eigenvalue from
to eigenvalue ~
less than pi-I,

Proof. Let the spectrum of the graph G be formed by the eigenvalues

,1.1>. . . , An. Putting ~ = u, we have
t

(27) HG(t) = U [
(U+A, + I)... (U+An+ 1)

(U-A,) . . . (U-An)

According to the definition of the generating function and according to (4)
we have

(28) (u)=
(u+A,+I) ",(u+An+l)

= I + ~ ~= 1+ ~~.1p (U-A,) . . . (U-An) L, uHI ~ u-A,
k=O .=1

We see that 1p(u) must be a rational function having only simple poles. The
set of these poles is equal to the main part of the spectrum of the graph.
Thus, multiple factors in expression (28) denominator have to be cancelled,
so that, after all pos<;ible cancel1ations, the zeros of the polynomial in the denomi-
nator represent the main part of the spectrum.

The statement of Theorem 3 follows from this fact.

Remark. In [6} an analogous theorem for the regular self-complementary graphs is proved.
That theorem can be proved analogously to Theorem 3 from th's paper, if one has in mind,
that the main part of the spectrum of a regular graph contains only the greatest number
from the spectrum.
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