SERIJA: MATEMATIKAIFIZIKA-SERIE: MATHEMATIQUESET PHYSIQUE

Peter S. Bullen

0. In a very interesting paper [2] Redheffer gives a sharper form of the arithmetic-geometric inequality, inequality (6) below. In this note an inequality of Rado type, related to Redheffer's inequality is given.

If $(d)=\left(d_{1}, d_{2}, \ldots\right),(q)=\left(q_{1}, q_{2}, \ldots\right)$ are two sequences of positive numbers. The following notations will be used:

$$
\begin{gathered}
Q_{n}=\sum_{k=1}^{n} q_{k}, \quad A_{n}=A_{n}(d ; q)=\frac{1}{Q_{n}} \sum_{k=1}^{n} d_{k} q_{k} \\
G_{n}=G_{n}(d ; q)=\left(\prod_{k=1}^{n} d_{k}^{q_{k}}\right)^{1 / Q_{n},} \quad \Gamma_{n}=A_{n}(G ; q)=\frac{1}{Q_{n}} \sum_{k=1}^{n} G_{k} q_{k}
\end{gathered}
$$

The following inequalities are classical:

$$
\begin{equation*}
A_{n} \geqslant G_{n} \tag{1}
\end{equation*}
$$

with equality if and only if $a_{1}=\cdots=a_{n}$;

$$
\begin{equation*}
\left(1-\frac{a}{b}\right)^{b} e^{a} \leqslant 1 \quad(0 \leqslant a \leqslant b) \tag{2}
\end{equation*}
$$

with equality if and only if $a=0$.

1. Theorem. If $0 \leqslant t q_{n} \leqslant Q_{n}$, then

$$
\begin{equation*}
Q_{n}\left(A_{n} e^{-t}+t \Gamma_{n}-G_{n}\right) \geqslant Q_{n-1}\left(A_{n-1} e^{-t}+t \Gamma_{n-1}-G_{n-1}\right) \tag{3}
\end{equation*}
$$

with equality if and only if $t=0$ and $d_{n-1}=G_{n-1}$.
Proof 1. Put $x=d_{n}$ and let $\dot{f}(x)$ denote the right hand side of (3); then

$$
f(x)=\left(Q_{n-1} A_{n-1}+q_{n} x\right) e^{-t}+t Q_{n-1} \Gamma_{n-1}-Q_{n}\left(1-\frac{q_{n}}{Q_{n}} t\right) G_{n-1}^{\frac{Q_{n-1}}{Q_{n}}} x^{\frac{q_{n}}{Q_{n}}}
$$

Simple calculations show f to have a single minimum at

$$
x=x_{0}=\left(\left(1-\frac{q_{n}}{Q_{n}} t\right) e^{t}\right)^{Q_{n} / Q_{n-1}} G_{n-1}
$$

[^0]and that
$$
f\left(x_{0}\right)=Q_{n-1}\left(A_{n-1} e^{-t}+t \Gamma_{n-1}-\left(1-\frac{q_{n}}{Q_{n}} t\right)^{Q_{n / Q_{n-1}}} e^{q_{n} t / Q_{n-1}} G_{n-1}\right) .
$$

By (2), and the hypothesis on t,

$$
f\left(x_{0}\right) \geqslant Q_{n-1}\left(A_{n-1} e^{-t}+t \Gamma_{n-1}-G_{n-1}\right) .
$$

This completes the first proof of (3); the cases of equality are easily obtained.

Proof 2. Rewrite (3) as

$$
\left(A_{n} e^{-t}+t \Gamma_{n}-G_{n}\right)-\frac{Q_{n-1}}{Q_{n}}\left(A_{n-1} e^{-t}+t \Gamma_{n-1}-G_{n-1}\right) \geqslant 0
$$

Easy calculations show that this last inequality is equivalent to

$$
\begin{equation*}
\frac{q_{n}}{Q_{n}} d_{n} e^{-t}+\frac{Q_{n-1}}{Q_{n}} G_{n-1} \geqslant\left(1-\frac{q_{n}}{Q_{n}}\right) G_{n-1}{ }_{n-1}^{Q_{n-1} / Q_{n}} d_{n}^{q_{n} / Q_{n}} . \tag{4}
\end{equation*}
$$

By (1) the left-hand side of (4) is not less than

$$
e^{-q_{n} t / Q_{n}} G_{n-1}{ }^{Q_{n-1} / Q_{n}} d_{n}^{q_{n} / Q_{n}},
$$

which by (2), and the hypothesis on t, is not less than the right-hand side of (4). This completes the second proof of (3), and again the cases of equality follow easily.
2. If $t=0$ the above theorem is an extension of Rado's inequality considered elsewhere, [1]; in particular (3) implies (1).

If $q_{1}=\cdots=q_{n}=1$ repeated applications of (3) shows that if $0 \leqslant t \leqslant 2$,

$$
G_{n} \leqslant A e^{-t}+t \Gamma_{n},
$$

the inequality being strict unless $t=0$, and $d_{1}=\cdots=d_{n}$.
In [2] Redheffer shows that (5) holds for all $t \geqslant 0$, and by choosing the best value of t, given by $e^{t}=A_{n} / \Gamma_{n}$, deduces that

$$
\begin{equation*}
e A_{n} \geqslant \Gamma_{n} e^{a_{n} / \Gamma_{n}} . \tag{6}
\end{equation*}
$$

By an inequality of Carleman this best value of t is not less than 1 , but since it may exceed 2 , we cannot deduce (6) from (3).

BIBLIOGRAPHY

[1] P. S. Bullen, Some inequalities for symmetric means, Pac. J. Math. 15(1965), 47-54.
[2] R. Redheffer, Recurrent inequalities, Proc. Lond. Math. Soc. (3) 17 (1967), 683-699.

[^0]: * Presented October 5, 1969 by D. S. Mitrinović and P. M. Vasić.

