PUBLIKACIJE ELEKTROTEHNICKOG FAKULTETA UNIVERZITETA U BEOGRADU publications de la faculte d'electrotechniaue de l'universite a belgrade

SERIJA: MATEMATIKAI FIZIKA - SERIE: MATHEMATIQUESET PHYSIQUE

IMPROVEMENTS OF STIRLING'S FORMULA BY ELEMENTARY METHODS*

Paul R. Beesack

Since Stirling's time (1764) it has been known that $n!\sim C \sqrt{n}(n / e)^{n}$, with $C=\sqrt{2 \pi}$, that is

$$
\begin{equation*}
\lim \frac{n!}{\sqrt{2 \pi n}(n / e)^{n}}=1 \tag{1}
\end{equation*}
$$

Formula (1) is known as Stirling's formula, and a great many elementary proofs of it have been given. Most such proofs use Wallis' formula

$$
\begin{equation*}
\lim \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot \cdots 2 n \cdot 2 n}{1 \cdot 3 \cdot 3 \cdot 5 \cdots(2 n-1)(2 n+1)}=\frac{\pi}{2} \tag{2}
\end{equation*}
$$

to show that $C=\sqrt{2 \pi}$. However, one of the most recent elementary proofs, by W. Feller [2, 3], avoids any appeal to Wallis' formula. Since completely elementary proofs of (2) are well known (see, for example [9]) this does not seem to be essential.

In addition, a number of upper and lower bounds for n ! (most of which imply (1)) have been obtained by various authors, also by elementary methods. One of the most elementary of these is the estimate $e^{11 / 12} \sqrt{n}(n / e)^{n}<n!<$ $<e \sqrt{n}(n / e)^{n}$ obtained by Hummel [4] in 1940. Most bounds are of the form

$$
\begin{equation*}
\sqrt{2 \pi n}(n / e)^{n} e^{\alpha n}<n!<\sqrt{2 \pi n}(n / e)^{n} e^{\beta_{n}} \tag{3}
\end{equation*}
$$

where α_{n} and β_{n} tend to zero through positive values. For example, $\beta_{n}=(12 n)^{-1}$ was proved in each of $[1,5,7,8,10]$, while the successively better values $\alpha_{n}=1 /(12 n+6), 1 /(12 n+1), 1 /\left(12 n+\frac{1}{4}\right), 1 /\left(12 n+\frac{3}{2(2 n+1)}\right)$ and $1 /(12 n)-$ $-1 /\left(360 n^{3}\right)$ were obtained in [10], [8], [1], [5] and [7] respectively. The method of proof is essentially the same in all of these cases and appears to be due to Cesàro [1]; in particular, Wallis' formula is used. (Cf. also Mitrinovićc [6] where a more extensive bibliography is given.) In this note we give a further refinement of Cesìro's method to prove (3) with

$$
\begin{equation*}
\alpha_{n}=\frac{1}{12 n}-\frac{1}{360 n^{3}}, \quad \beta_{n}=\frac{1}{12 n}-\frac{1}{\left(360+\gamma_{n}\right) n^{3}}, \quad \gamma_{n}=30 \frac{7 n(n+1)+1}{n^{2}(n+1)^{2}} \tag{4}
\end{equation*}
$$

[^0]for $n \geqslant 1$. We thus obtain the best lower bound (for $n \geqslant 2$) of those noted above, and a substantially improved upper bound.

In view of (1) we begin with the sequence $\left\{a_{n}\right\}$ defined by

$$
a_{n}=\frac{n!e^{n}}{n^{n} \sqrt{n}} \quad n \geqslant 1,
$$

for which

$$
\begin{equation*}
\frac{a_{n}}{a_{n+1}}=\frac{1}{e}\left(1+\frac{1}{n}\right)^{n+\frac{1}{2}} \rightarrow 1 \tag{5}
\end{equation*}
$$

We shall prove - in accordance with (1) - that $\lim a_{n}$ exists and has the value $\sqrt{2 \pi}$, at the same time obtaining the bounds (3), (4). To this end, we shall obtain bounds for

$$
\log \left(1+\frac{1}{n}\right)^{n+\frac{1}{2}}=\left(n+\frac{1}{2}\right) \log \left(1+\frac{1}{n}\right)
$$

From the well-known expansion

$$
\log \left(\frac{1+x}{1-x}\right)=2 \sum_{k=1}^{\infty} \frac{x^{2 k-1}}{2 k-1}, \quad|x|<1,
$$

we obtain on setting $x=(2 n+1)^{-1}$,

$$
\log \left(\frac{n+1}{n}\right)=2 \sum_{k=1}^{\infty} \frac{1}{(2 k-1)} \frac{1}{(2 n+1)^{2 k-1}}=\frac{1}{n+\frac{1}{2}} \sum_{k=0}^{\infty} \frac{1}{2 k+1} \frac{1}{(2 n+1)^{2 k}},
$$

or

$$
\begin{equation*}
\log \left\{\frac{1}{e}\left(1+\frac{1}{n}\right)^{n+\frac{1}{2}}\right\}=\sum_{k=1}^{\infty} \frac{1}{2 k+1} \frac{1}{(2 n+1)^{2 k}} \tag{6}
\end{equation*}
$$

Note that (5) and (6) show that $a_{n}>a_{n+1}$ for all $n \geqslant 1$. The idea of the proof is now to find positive sequences $\{f(n)\},\{g(n)\}$ both of which tend to zero, such that

$$
\begin{equation*}
f(n)-f(n+1)<\sum_{k=1}^{\infty} \frac{1}{2 k+1} \frac{1}{(2 n+1)^{2 k}}<g(n)-g(n+1) \tag{7}
\end{equation*}
$$

holds at least for all sufficiently large n, say $n \geqslant N$. For then it follows from (5) and (6) that

$$
\exp \{f(n)-f(n+1)\}<\frac{a_{n}}{a_{n+1}}<\exp \{g(n)-g(n+1)\}
$$

and hence both

$$
\begin{align*}
& a_{n+1} \exp \{-f(n+1)\}<a_{n} \exp \{-f(n)\} \equiv x_{n}, \tag{8}\\
& a_{n+1} \exp \{-g(n+1)\}>a_{n} \exp \{-g(n)\} \equiv y_{n}
\end{align*}
$$

for $n \geqslant N$. The sequence $\left\{x_{n}\right\}$ is thus monotone decreasing and bounded below by zero so that $\lim x_{n}=\alpha$ exists with $\alpha \geqslant 0$. Since $f(n) \rightarrow 0+$, it also follows that

$$
\lim a_{n}=\lim x_{n} \exp \{f(n)\}=\alpha \cdot 1=\alpha
$$

also exists. Similarly, by (9), the sequence $\left\{y_{n}\right\}$ is monotone increasing with $y_{n+1}<a_{n+1}<a_{n}<\cdots<a_{1}$, so that $\lim y_{n}=\beta$ exists with $\beta>0$. Hence,

$$
\alpha=\lim a_{n}=\lim y_{n} \exp \{g(n)\}=\beta>0 .
$$

Using Wallis' formula (2), and the fact that $n!=(n / e)^{n} \sqrt{n} a_{n}$, we have

$$
\pi=2 \lim \frac{\left\{2^{2 n}(n!)^{2}\right\}^{2}}{\{(2 n)!\}^{2}(2 n+1)}=\lim \frac{1}{1+\frac{1}{2 n}} \frac{\left\{2^{2 n}(n!)^{2}\right\}^{2}}{\{(2 n)!\}^{2} n}
$$

whence

$$
\sqrt{\pi}=\lim \frac{2^{2 n}(n!)^{2}}{(2 n!) \sqrt{n}}=\lim \frac{2^{2 n}(n / e)^{2 n} n a_{n^{2}}}{(2 n / e)^{2 n} \sqrt{2} n a_{2 n}}=\lim \frac{a_{n^{2}}}{\sqrt{2} a_{2 n}}=\frac{\alpha}{\sqrt{2}},
$$

since $\alpha>0$. Hence, $\lim a_{n}=\lim x_{n}=\lim y_{n}=\alpha=\sqrt{2 \pi}$ so, using the monotone character of $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$, it follows that

$$
\begin{gathered}
y_{n}=a_{n} \exp \{-g(n)\}<a=\sqrt{2 \pi}<a_{n} \exp \{-f(n)\}=x_{n}, \\
\frac{n!e^{n}}{n^{n} \sqrt{n}} \exp \{-g(n)\}<\sqrt{2 \pi}<\frac{n!e^{n}}{n^{n} \sqrt{n}} \exp \{-f(n)\},
\end{gathered}
$$

so that

$$
\begin{equation*}
\sqrt{2 \pi n}(n / e)^{n} \exp \{f(n)\}<n!<\sqrt{2 \pi n}(n / e)^{n} \exp \{g(n)\} \tag{10}
\end{equation*}
$$

for all $n \geqslant N$, provided f and g satisfy (7) as specified.
Turning now to (7), we proceed as in Cesìro [1], but carry one extra term in each case to obtain

$$
\begin{aligned}
\sum_{k=1}^{\infty} \frac{1}{2 k+1} \frac{1}{(2 n+1)^{2 k}} & <\frac{1}{3(2 n+1)^{2}}+\frac{1}{5} \sum_{k=2}^{\infty} \frac{1}{(2 n+1)^{2 k}} \\
& =\frac{1}{3(2 n+1)^{2}}+\frac{1}{5} \frac{(2 n+1)^{-4}}{1-(2 n+1)^{-2}} \\
& =\frac{1}{3(2 n+1)^{2}}+\frac{1}{20 n(n+1)(2 n+1)^{2}}
\end{aligned}
$$

and similarly,

$$
\begin{aligned}
\sum_{k=1}^{\infty} \frac{1}{2 k+1} \frac{1}{(2 n+1)^{2 k}} & >\frac{1}{3(2 n+1)^{2}}+\frac{1}{5} \sum_{k=2}^{\infty}\left(\frac{5}{7}\right)^{k-2} \frac{1}{(2 n+1)^{2 k}} \\
& =\frac{1}{3(2 n+1)^{2}}+\frac{1}{5} \frac{(2 n+1)^{-4}}{1-\frac{5}{7}(2 n+1)^{-2}} \\
& =\frac{1}{3(2 n+1)^{2}}+\frac{7}{10(2 n+1)^{2}\left(14 n^{2}+14 n+1\right)}
\end{aligned}
$$

since $\frac{1}{5}\left(\frac{5}{7}\right)^{k-2}<\frac{1}{2 k+1}$ for all $k>3$ is easily verified. In order to obtain (7), and with it the desired estimates (3) and (4), we now show that

$$
\begin{align*}
\frac{1}{3(2 n+1)^{2}} & +\frac{7}{10(2 n+1)^{2}\left(14 n^{2}+14 n+1\right)} \tag{11}\\
& \geqslant \frac{1}{12}\left(\frac{1}{n}-\frac{1}{n+1}\right)-\frac{1}{A}\left(\frac{1}{n^{3}}-\frac{1}{(n+1)^{3}}\right), \quad n \geqslant 1,
\end{align*}
$$

$$
\begin{align*}
\frac{1}{3(2 n+1)^{2}} & +\frac{1}{20 n(n+1)(2 n+1)^{2}} \tag{12}\\
& \leqslant \frac{1}{12}\left(\frac{1}{n}-\frac{1}{n+1}\right)-\frac{1}{B}\left(\frac{1}{n^{3}}-\frac{1}{(n+1)^{3}}\right), \quad n \geqslant N \geqslant 1,
\end{align*}
$$

both hold, provided $0<A \leqslant 360$ and $B \geqslant 360+\gamma_{N}$. It will then follow that (7) holds with $f(n)=\frac{1}{12 n}-\frac{1}{360 n^{3}}=\alpha_{n}$, and $g(n)=\frac{1}{12 n}-\frac{1}{\left(360+\gamma_{N}\right) n^{3}}$. Hence (10) will also hold for such f and g (and $n \geqslant N$). But then, on setting $n=N \geqslant 1$ in (10), we obtain the estimates (3), (4) and the proof will be complete.

Now, (11) holds if and only if

$$
\begin{aligned}
\frac{1}{A} \frac{3 n^{2}+3 n+1}{n^{3}(n+1)^{3}} & \geqslant \frac{1}{12 n(n+1)}-\frac{1}{3(2 n+1)^{2}}-\frac{7}{10(2 n+1)^{2}\left(14 n^{2}+14 n+1\right)} \\
& =\frac{28 n^{2}+28 n+5}{60 n(n+1)\left(4 n^{2}+4 n+1\right)\left(14 n^{2}+14 n+1\right)}
\end{aligned}
$$

or

$$
A \leqslant \frac{60\left(3 n^{2}+3 n+1\right)\left(4 n^{2}+4 n+1\right)\left(14 n^{2}+14 n+1\right)}{n^{2}(n+1)^{2}\left(28 n^{2}+28 n+5\right)} .
$$

It is easy to verify that the quotient on the right exceeds 360 for all $n \geqslant 1$ (set $y=n(n+1)$ to simplify!), so that (11) holds as asserted if $0<A \leqslant 360$. Similarly, (12) is equivalent to

$$
\frac{1}{B} \frac{3 n^{2}+3 n+1}{n^{2}(n+1)^{3}} \leqslant \frac{1}{30 n(n+1)(2 n+1)^{2}}
$$

or

$$
\begin{aligned}
B & \geqslant \frac{30\left(3 n^{2}+3 n+1\right)\left(4 n^{2}+4 n+1\right)}{n^{2}(n+1)^{2}}=30 \frac{12 n^{4}+24 n^{3}+19 n^{2}+7 n+1}{n^{2}(n+1)^{2}} \\
& =30 \frac{12 n^{2}(n+1)^{2}+7 n^{2}+7 n+1}{n^{2}(n+1)^{2}}=360+30 \frac{7 n(n+1)+1}{n^{2}(n+1)^{2}}=360+\gamma_{n} .
\end{aligned}
$$

For any $B>360$ this inequality will be satisfied for all sufficiently large n. Since $\gamma_{n}=30\left\{7[n(n+1)]^{-1}+[n(n+1)]^{-2}\right\}$ is a decreasing function of n, we have
$360+\gamma_{N} \geqslant 360+\gamma_{n}$ for all $n \geqslant N \geqslant 1$, so that (12) holds as asserted provided $B \geqslant 360+\gamma_{N}$.

By retaining additional terms in the expansion (6), the estimates (3), (4), can, of course, be improved. For example by retaining one more term - and with considerably more algebra - one obtains (3) with

$$
\alpha_{n}=\frac{1}{12 n}-\frac{1}{360 n^{3}}+\frac{1}{1260\left(1+\frac{2}{n(n+1)}\right) n^{5}}, \quad \beta_{n}=\frac{1}{12 n}-\frac{1}{360 n^{3}}+\frac{1}{1260 n^{5}} .
$$

REFERENCES

[1] E. CesÀro, Elementares Lehrbuch der algebraischen Analysis und der Infinitesimalrechnung, Leipzig, 1922, p. 154.
[2] W. Feller, A direct proof of Stirling's formula, Amer. Math. Monthly 74 (1967), 1223-1225.
[3] W. Feller, Correction to „A direct proof . . " ibid. 75 (1968), 518.
[4] P. M. Hummel, A note on Stirling's formula, ibid. 47 (1940), 97-. 99.
[5] A. J. Maria, A remark on Stirling's formula, ibid. 72 (1965), 1096-1098.
[6] D. S. Mitrinović, Analytic Inequalities, § 27, Part II, Berlin 1970.
[7] T. S. Nanjundiah, Note on Stirling's formula, Amer. Math. Monthly 66 (1965) 701-703.
[8] H. Robbins, A remark on Stirling's formula, ibid. 62 (1955), 26-29.
[9] A. Schwartz, Calculus and Analytic Geometry, 2 nd ed., New York 1967, p. 370.
[10] J. V. Uspensky, introduction to Mathematical Probability, New York, 1937, p. 352.
Carleton University,
Ottawa, Canada

[^0]: * Presented October 5, 1969 by D. S. Mitrinović.

