PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU publications de la faculté d'electrotechnioue de l'universite a belgrade

[^0]
INEQUALITIES INVOLVING ITERATED KERNELS AND CONVOLUTIONS*

Paul R. Beesack

In 1960, Atkinson, Watterson and Moran [1] conjectured that if $K(x, y)$ is a nonnegative, symmetric kernel which is integrable on a square $[0, a] \times[0, a]$, and $K_{n}(x, y)$ is the $n^{\text {th }}$ iterate of K, then

$$
\begin{equation*}
a^{n-1} \int_{0}^{a} \int_{0}^{a} K_{n}(x, y) d x d y \geqslant\left(\int_{0}^{a} \int_{0}^{a} K(x, y) d x d y\right)^{n} \text { for } n=1,2, \ldots \tag{1}
\end{equation*}
$$

This conjecture was proved for $n=2$ and $n=3$ by using appropriate matrix inequalities and applying these inequalities to approximating RIEMANN sums for the integrals appearing in (1); the truth of the conjecture for all n of the form $n=2^{r} 3^{s}$ was then easily established by induction.

In this note we shall prove a somewhat weaker inequality than (1) which is valid for all $n \geqslant 1$ and for an arbitrary nonnegative kernel K. In addition, we use the same technique to obtain a lower bound for the convolution of n positive functions. However, before proceeding with this we want to point out that (1) may be false for all $n>1$ if K is not symmetric. To see this, let $K(x, y)=f(x) g(y)$ where f, g are positive and continuous on $[0, a]$. Using the definition $K_{n}(x, y)=\int_{0}^{a} K_{n-1}(x, s) K(s, y) d s$ for $n>2$, we obtain $K_{n}(x, y)=$ $=A^{n-1} f(x) g(y)$ where $A=\int_{0}^{a} f(s) g(s) d s$. Then for all $n \geqslant 2$,(1) is satisfied if, and only if,

$$
\begin{equation*}
a \int_{0}^{a} f(s) g(s) d s \geqslant\left(\int_{0}^{a} f(s) d s\right)\left(\int_{0}^{a} g(s) d s\right) \tag{2}
\end{equation*}
$$

However, by Chebychev's inequality [2, Theorem 236], (2) does not hold if f and g are oppositely ordered, for example if $f(x) \equiv x, g(x) \equiv a-x$.

We shall formulate our inequality in a more general manner than that given in (1). To this end, let μ be a nonnegative measure on an σ-algebra of subsets of a set A, with $0<\mu(A)<\infty$. For brevity, we write $A_{2}=A \times A$,

[^1]$A_{3}=A \times A \times A, \ldots$, and for clarity we also write $d x_{1} d x_{2} \cdots d x_{n}$, or $d x_{0} d x_{1} \cdots d x_{n-1}$ etc. to denote integration with respect to the product measure $\mu \times \mu \times \cdots \times \mu$ defined on subsets of A_{n}.

Theorem 1. Suppose that $K \in L_{2}\left(A_{2}\right)$ with $K(x, y) \geqslant 0$ on A_{2}. If the iterated kernels of K are defined by

$$
K_{1}(x, y)=K(x, y), K_{n}(x, y)=\int_{A} K_{n-1}(x, r) K(r, y) d r(n \geqslant 2),
$$

then

$$
\begin{equation*}
\int_{A_{2}} K_{n}(x, y) d x d y \geqslant[\mu(A)]^{n+1} \exp \left\{n \int_{A_{2}} \log K(x, y) d x d y / \mu^{2}(A)\right\} . \tag{3}
\end{equation*}
$$

Proof. It follows from the definition and Fubini's Theorem that

$$
K_{n}\left(x_{0}, x_{n}\right)=\int_{A_{n-1}}\left(\prod_{j=1}^{n} K\left(x_{j-1}, x_{j}\right)\right) d x_{n-1} \cdots d x_{1}
$$

whence

$$
\begin{equation*}
\int_{A_{2}} K_{n}(x, y) d x d y=\int_{A_{n+1}}\left(\prod_{j=1}^{n} K\left(x_{j-1}, x_{j}\right)\right) d x_{n} \cdots d x_{0} \tag{4}
\end{equation*}
$$

We note that each K_{n} is defined a.e. on A_{2} and is in $L_{2}\left(A_{2}\right)$ since $K \in L_{2}\left(A_{2}\right)$; in addition $K_{n} \in L\left(A_{2}\right)$ since $\mu(A)<\infty$, so the existence of the integral in (4) is assured. Now,

$$
\lim _{r \rightarrow 0+}\left\{\frac{1}{n} \sum_{j=1}^{n} K^{r}\left(x_{j-1}, x_{j}\right)\right\}^{1 / r}=\prod_{j=1}^{n} K^{\frac{1}{n}}\left(x_{j-1}, x_{j}\right)=\left\{\prod_{j=1}^{n} K\left(x_{j-1}, x_{j}\right)\right\}^{1 / n},
$$

by [2, Theorem 3], and the convergence is monotonic, so by (4) we obtain

$$
\begin{align*}
\int_{A_{2}} K_{n}(x, y) d x d y & =\lim _{r \rightarrow 0+} \int_{A_{n+1}}\left\{\frac{1}{n} \sum_{j=1}^{n} K^{r}\left(x_{j-1}, x_{j}\right)\right\}^{\frac{n}{r}} d x_{n} \cdots d x_{0} \tag{5}\\
& =\lim _{r \rightarrow 0+} X_{r}, \text { say. }
\end{align*}
$$

For $0<r<n$ the function $x^{n / r}$ is convex, hence by Jensen's inequality [2, Theorem 204], with weight function $p \equiv 1$, we have

$$
X_{r} \geqslant[\mu(A)]^{n+1}\left\{\int_{A_{n+1}} \frac{1}{n} \sum_{j=1}^{n} K^{r}\left(x_{j-1}, x_{j}\right) d x_{n} \cdots d x_{0} /[\mu(A)]^{n+1}\right\}^{\frac{n}{r}} .
$$

However,

$$
\begin{equation*}
\int_{A_{n+1}} K^{r}\left(x_{j-1}, x_{j}\right) d x_{n} \cdots d x_{0}=[\mu(A)]^{n-1} \int_{A_{2}} K^{r}(x, y) d x d y \tag{6}
\end{equation*}
$$

so that

$$
X_{r} \geqslant[\mu(A)]^{n+1-\frac{2 n}{r}}\left(\int_{A_{2}} K^{r}(x, y) d x d y\right)^{\frac{n}{r}}
$$

Finally, we use [2, Theorem 184] with $p \equiv 1$ which gives

$$
\left(\frac{\int_{A_{2}} K^{r}(x, y) d x d y}{\int_{A_{2}} d x d y}\right)^{\frac{1}{r}} \geqslant \exp \left(\frac{\int_{A_{2}} \log K d x d y}{\int_{A_{2}} d x d y}\right)
$$

Combining this with the preceding inequality gives, for $0<r<n$,

$$
X_{r}>[\mu(A)]^{n+1} \exp \left\{n \int_{A_{2}} \log K d x d y / \mu^{2}(A)\right\}
$$

so that (3) now follows from (5), and the proof is complete.
The method of proof used above is essentially that used by J. F. C. Kingman in [3]. A similar proof gives the inequality

$$
\begin{align*}
& \int_{a}^{b} \int_{a}^{x} K_{n}(x, y) d y d x \tag{7}\\
& \quad \geqslant \frac{(b-a)^{n+1}}{(n+1)!} \exp \left\{\frac{n(n+1)}{(b-a)^{n+1}} \int_{a}^{b} \int_{a}^{x}(b+y-a-x)^{n-1} \log K(x, y) d y d x\right\}
\end{align*}
$$

which is val'd for all $n \geqslant 3$, when K is a square integrable, nonnegative Volterra kernel on $[a, b] \times[a, b]$, so that $K(x, y)=0$ for $y>x$. The details of the proof are rather messy, and we only note the following facts as a help to the reader. First, the $n^{\text {th }}$ iterated kernel of a Volterra kernel is given by

$$
K_{n}\left(t_{n}, t_{0}\right)=\int_{t_{0}}^{t_{n}} \int_{t_{0}}^{t_{n-1}} \cdots \int_{t_{0}}^{t_{2}} K\left(t_{n}, t_{n-1}\right) \cdots K\left(t_{1}, t_{0}\right) d t_{1} \cdots d t_{n-1}(n \geqslant 2) .
$$

The essential step in the proof - corresponding to equation (6)-is now

$$
\begin{aligned}
& \frac{1}{n} \int_{a}^{b} \int_{t_{0}}^{b} \int_{t_{0}}^{t_{n}} \cdots \int_{t_{0}}^{t_{2}} \sum_{j=1}^{n} K^{r}\left(t_{j}, t_{j-1}\right) d t_{1} \cdots d t_{n} d t_{0} \\
&=\frac{1}{n!} \int_{a}^{b} \int_{a}^{x}(b+y-a-x)^{n-1} K^{r}(x, y) d y d x
\end{aligned}
$$

and this may be verified for all $n \geqslant 2$ by induction. We also note that the same technique may be applied to give a lower bound for K_{n} itself, either in Theorem 1, or for Volterra kernels. The following theorem is an example of an inequality of this type.

Theorem 2. Let $f_{1}, f_{2}, \ldots, f_{n}$ be nonnegative functions each of which is Lebesguesquare integrable on $[0, a]$ for all $a>0$. If the convolution $\int_{0}^{x} f_{i}(t) f_{j}(x-t) d t$ is denoted by $f_{i} * f_{j}(x)$, then for all $n \geqslant 2$, and $x \geqslant 0$, we have
(8) $f_{1} * f_{2} * \cdots * f_{n}(x)$

$$
\geqslant \frac{x^{n-1}}{(n-1)!} \exp \left\{(n-1) x^{-n+1} \int_{0}^{x}(x-u)^{n-2} \sum_{j=1}^{n} \log f_{j}(u) d u\right\}
$$

Proof. Proceeding as in Theorem 1, we have (with $t_{0}=0$),

$$
\begin{array}{rl}
f_{1} * f_{2} & * \cdots * f_{n}\left(t_{n}\right) \\
& =\int_{0}^{t_{n}} \int_{0}^{t_{n-1}} \cdots \int_{0}^{t_{2}} f_{1}\left(t_{1}\right) f_{2}\left(t_{2}-t_{1}\right) \cdots f_{n}\left(t_{n}-t_{n-1}\right) d t_{1} \cdots d t_{n-1} \\
& =\lim _{r \rightarrow 0+} \int_{0}^{t_{n}} \int_{0}^{t_{n-1}} \cdots \int_{0}^{t_{2}}\left\{\frac{1}{n} \sum_{j=1}^{n} f_{j}^{r}\left(t_{j}-t_{j-1}\right\}^{\frac{n}{r}} d t_{1} \cdots d t_{n-1}\right. \\
& \geqslant I_{n}\left(t_{n}\right) \lim _{r \rightarrow 0+}\left\{\int_{0}^{t_{n}} \cdots \int_{0}^{t_{2}} \sum_{j=1}^{n} f_{j}^{r}\left(t_{j}-t_{j-1}\right) d t_{1} \cdots d t_{n-1} / n I_{n}\left(t_{n}\right)\right\}^{\frac{n}{r}}
\end{array}
$$

where $I_{n}\left(t_{n}\right)=\int_{0}^{t_{n}} \cdots \int_{0}^{t_{2}} d t_{1} \cdots d t_{n-1}=t_{n}{ }^{n-1} /(n-1)$! We now note that

$$
\begin{equation*}
\int_{0}^{t_{n}} \cdots \int_{0}^{t_{2}} \sum_{j=1}^{n} f_{j}^{r}\left(t_{j}-t_{j-1}\right) d t_{1} \cdots d t_{n-1}=\int_{0}^{t_{n}} \frac{\left(t_{n}-u\right)^{n-2}}{(n-2)!} \sum_{j=1}^{n} f_{j}^{r}(u) d u . \tag{9}
\end{equation*}
$$

This is immediate for $n=2$, and follows by an easy induction for all $n \geqslant 2$. Hence we have
(10) $f_{1} * f_{2} * \cdots * f_{n}(x) \geqslant \lim _{r \rightarrow 0+}\left[I_{n}(x)\right]^{1-\frac{n}{r}}\left\{\frac{1}{n} \int_{0}^{x} \frac{(x-u)^{n-2}}{(n-2)!} \sum_{j=1}^{n} f_{j}^{r}(u) d u\right\}^{\frac{n}{r}}$.

Now by the arithmetic-geometric mean inequality,

$$
\frac{1}{n} \sum_{j=1}^{n} f_{j}^{r}(u) \geqslant\left(\prod_{j=1}^{n} f_{j}(u)\right)^{\frac{n}{r}}
$$

Hence, using [2, Theorem 184] with $p(u)=(x-u)^{n-2} /(n-2)$!,

$$
\begin{aligned}
\left\{\int_{0}^{x} p(u) \frac{1}{n} \sum_{j=1}^{n} f_{j}^{r}(u) d u\right\} & \geqslant\left\{\int_{0}^{x} p(u)\left[\left\{\prod_{j=1}^{n} f_{j}(u)\right\}^{\frac{1}{n}}\right]^{r} d u\right\}^{\frac{n}{r}} \\
& \left.\geqslant\left(\int_{0}^{x} p(u) d u\right)^{\frac{n}{r}} \exp \frac{\left.n \int_{0}^{x} p(u) \frac{1}{n} \log \left\{\prod_{j=1}^{n} f_{j}(u)\right\} d u\right\}}{\int_{0}^{x} p(u) d u}\right\}
\end{aligned}
$$

Finally we note that $\int_{0}^{x} p(u) d u=x^{n-1} /(n-1)!=I_{n}(x)$, so that on combining the last inequality with (10) we obtain

$$
f_{1} * f_{2} * \cdots * f_{n}(x) \geqslant I_{n}(x) \exp \left\{\frac{\int_{0}^{x} \frac{(x-u)^{n-2}}{(n-2)!} \log \left\{\prod_{j=1}^{n} f_{j}(u)\right\} d u}{x^{n-1} /(n-1)!}\right\}
$$

which reduces to (8), and completes the proof of the theorem.
The fact that the inequality (3) is weaker than (1) for the class of symmetric, nonnegative kernels on $[0, a] \times[0, a]=A_{2}$ follows from [2, Theorem 184] which gives

$$
\int_{0}^{a} \int_{0}^{a} K d x d y \geqslant a^{2} \exp \left\{\int_{0}^{a} \int_{0}^{a} \log K d x d y / a^{2}\right\} .
$$

We conclude this paper by noting that, for this class of kernels, (1) is actually valid for all $n \geqslant 1$. More generally, if v is any nonnegative function (for simplicity, we assume v and K are continuous), then

$$
\begin{align*}
\left(\int_{0}^{a} v^{2}(x) d x\right)^{n-1} \int_{0}^{a} \int_{0}^{a} v(x) v(y) & K_{n}(x, y) d x d y \tag{11}\\
& \geqslant\left(\int_{0}^{a} \int_{0}^{a} v(x) v(y) K(x, y) d x d y\right)^{n},
\end{align*}
$$

for all $n \geqslant 1$; setting $v(x)=1$, (1) is obtained. The inequality (11) follows at once from the matrix inequality $\left(v_{T} v\right)^{n-1}\left(v_{T} A^{n} v\right) \geqslant\left(v_{T} A v\right)^{n}$, rr

$$
\begin{equation*}
\left(\sum_{i=1}^{k} v_{i}{ }^{2}\right)^{n-1} \sum_{i=1}^{k} \sum_{j=1}^{k} v_{i} a_{i j}^{(n)} v_{j} \geqslant\left(\sum_{i=1}^{k} \sum_{j=1}^{k} v_{i} a_{i j} v_{j}\right)^{n} \tag{12}
\end{equation*}
$$

proved by Mulholland and Smith [4], by replacing the integrals in (11) by approximating Riemann sums of the form appearing in (12), then taking limits as $k \rightarrow \infty$. In (12), the matrix $A=\left(a_{i j}\right)$ is a $k \times k$ symmetric matrix with all $a_{i j} \geqslant 0$, and $v_{T}=\left(v_{1}, \ldots, v_{k}\right)$ has all $v_{i} \geqslant 0$. In the paper [1] the authors mentioned the inequality (12) in a note (added in proof), but apparently did not notice that (12) implied (11), and hence also (1).

REFERENCES

[1] F. V. Atkinson, G. A. Watterson and P. A. P. Moran, a matrix inequality Quart. Journ. of Math. Oxford Second Series, 11 (1960), 137-140.
[2] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd ed., Cambridge, 1952.
[3] J. F. C. Kingman, An inequality involving Radon - Nikodym derivatives, Proc. Camb. Philos. Soc. 63 (1967), 195-198.
[4] H. P. Mulholland and C. A. B. Smith, An inequality arising in genetical theory Amer. Math. Monthly, 66 (1959), 673-683.

Carleton University
Ottawa, Canada.

[^0]: SERIJA: MATEMATIKA IFIZIKA - SERIE: MATHEMATIQUESETPHYSIQUE

[^1]: * Presented September 15, 1969 by D. S. Mitrinović.

