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276. INEQUALITIES INVOLVING ITERATED
KERNELS AND CONVOLUTIONS*

Paul R. Beesack

In 1960, ATKINSON,WATTERSONand MORAN[1] conjectured that if K(x, y)
is a nonnegative, symmetric kernel which is integrable on a square [0, a] x [0, a],
.and Kn (x, y) is the nth iterate of K, then

a a a a

(1) an-l f f Kn(x, y) dx dy > (f f K (x, y) dx dy r for n = 1, 2, .. .
o 0 0 0

This conjecture was proved for n = 2 and n = 3 by using appropriate matrix
inequalities and applying these inequalities to approximating RIEMANNsums for
the integrals appearing in (1); the truth of the conjecture for all n of the
form n = 2r 38 was then easily established by induction.

In this note we shall prove a somewhat weaker inequality than (1) which
is valid for all n> 1 and for an arbitrary nonnegative kernel K. In addition,
we use the same technique to obtain a lower bound for the convolution of n
positive functions. However, before proceeding with this we want to point out
that (1) may be false for all n> 1 if K is not symmetric. To see this, let
K(x, y) = f(x) g(y) where f, g are positive and continuous on [0, a]. Using the

a

.definition Kn (x, y) = j Kn-l (x, s) K(s, y) ds for n > 2, we obtain Kn (x, y) =
o

a
=An-lf(x)g(y) where A =ff(s) g(s) ds. Then for all n>2, (1) is satisfied if,

o
.and only if,

(2)
a a a

a j f(s)g(s)ds>(j f(s)ds)(j g(s)ds).
o 0 0

However, by CHEBYCHEY'Sinequality [2, Theorem 236], (2) does not hold if f
and g are oppositely ordered, for example if f(x)=x, g(x)==a--x.

We shall formulate our inequality in a more general manner than that
given in (1). To this end, let fl be a nonnegative measure on an a-algebra of
subsets of a set A, with O<fl(A)< 00. For brevity, we write A2=A x A,
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A3 = A x A x A, ..., and for clarity we also write dXl dX2 . . . dXn, or
dxo dXl . . . dXn-l etc. to denote integration with respect to the product measure
p, x p, x . . . x p, defined on subsets of An.

Theorem 1. Suppose that K E L2 (A2) with K(x, y) :>0 on A2. If the iterated kernels
of K are defined by

K1(x, y)=K(x, y), Kn(x, y)= JKn-l(X, r) K(r, y) dr (n:>2),
A

then

(3) JKn (x, y) dx dy:> [p,(A)]Ml exp {n Jlog K(x, y) dx dy/p,2 (A)} .
Az Az

Proof. It follows from the definition and FUBINI'S Theorem that

whence

JKn(x, y) dxdy= J CD K(Xj-l' Xj)dxn" .dxo.
Az An+l j=l

We note that each Kn is defined a.e. on A2 and is in L2 (A2) since K E L2 (A2);
in addition Kn E L(A2) since p,(A)< 00, so the existence of the integral in (4)
is assured. Now,

(4)

1
.

{

In

}

l/r n n
{

n

}

lln
Inn - L: Kr (Xj-I> Xj)= TI K (Xj-I> Xj) = TI K(Xj-l, Xj) ,

r-->O+ n j=l j=l j=l

Theorem 3], and the convergence is monotonic, so by (4) we obtainby [2,

(5)
"J Kn(x, y)dxdy= lim J

{
~

2: Kr(Xj-l' Xj)
}
'dXn' . .dxo

Az r-->O+ An+l n j=l

= lim Xr, say.
r-->O+

For O<r<n the function xnlr is convex, hence by JENSEN'S inequality [2.
Theorem 204], with weight function p= 1, we have

However,

(6) J Kr(xj-I> xj)dxn" .dxo=[p,(A)]n-l JKr(x,y)dxdy,
An+1 Az

so that
2n n

Xr:> [p,(A)]
n+l-,

(J Kr(x, y) dx dY) '.
Az
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Finally, we use [2, Theorem 184] with p=1 which gives

(

1
Kr (x, y) dx dY

)

+

(

1
log K dx dy

]

2 ;;;. exp 2 .

Jdxdy Jdxdy
A2 A2

Combining this with the preceding inequality gives, for O<r<n,

Xr>Lu(A)]n+1 exp {n Jlog K dx dyf p,2 (A)}

A2

'So that (3) now follows from (5), and the proof is complete.
The method of proof used above is essentially that used by J. F. C. KING-

MAN in [3]. A similar proof gives the inequality

(7)
b x

JJKn(x, y) dy dx
a a

(b-a)n+1

{

n (n + 1) b x

}
;;;.-- exp

. JJ (b+y-a-x)n-I log K(x, y)dydx
(n+ I)! (b-a)n+1 a a

which is vard for all n;;;.3, when K is a square integrable, nonnegative VOLTERRA
kernel on [0, b] x [0, b], so that K(x, y)= 0 for y>x, The details of the proof
.are rather messy, and we only note the following facts as a help to the reader.
First, the nth iterated kernel of a VOLTERRAkernel is given by

tn tn-I t2

Kn{tn, to) = JJ .., JK{tn, tn-I)' , . K(tp to)dtl . . ,dtn-I (n;;;.2).
to to to

The essential step in the proof - corresponding to equation (6)-is now

b b tn t2

~ JJJ . .. JjtKr{tj' tj-I)dtl' . .dtndto

a to to to

b x

=
~! JJ(b+ y-o-x)n-I Kr(x, y) dy dx,

a a

.and this may be verified for all n;;;.2 by induction. We also note that the same
technique may be applied to give a lower bound for Kn itself, either in Theorem 1,
or for VOLTERRAkernels. The following theorem is an example of an inequality
,of this type.
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Theorem 2. Let h, fz, ... , fn be nonnegative functions each of which is Lebesgue-
x

square integrable on [0, a] for all a>O. If the convolution Jfi (t) Jj (x-t) dt is:-
o

denoted by fi * Jj (x), then for all n:> 2, and x:> 0, we have

(8) h
*

fz
*

..,
* fn (x)

xn-I x n

:>-- exp {(n-l)x-n+1 J (x_u)n-2
L: log.fj(u)du}

(n-I)! 0 j=1

Proof. Proceeding as in Theorem I, we have (with to= 0),

In tn-l 12

= JJ ... J h(tI)!z(tZ-tl). . fn(tn-tn-l)dtl. . .dtn-l
o 0 0

In tn-l

= lim J Jr-o+
o 0

In 12 n

:> In(tn) lim {J
... J i: f/(tj-tj-l)dtl" .dtn-dnln(tn)

}
',.

r-+O+ ;=1
o O.

In 12

where In(tn) = J .. . J dtl. . .dtn-l = tnn-Ij(n-I)! We now note that
o 0

(9)

This is immediate for n = 2, and follows by an easy induction for all n:> 2-

Hence we have
x n

1
n

{

I J (x-u)n-z n

}
'(10) fl * fz* ...* fn(x):> lim [In(x)] -, - -- L: f/(u)du .

r-+O+ n (n- 2)! j= 1
o

Now by the arithmetic-geometric mean inequality,

n

: JI fl (u):>(D.fj (U))',



Inequalities involving iterated kernels and convolutions IS.

Hence, using [2, Theorem 184] with p(u) = (X-U)n-2/(n-2) !,

x x I n

{J
p(U)

~ JI
I/(u)du

} >{ Jp(u)
[{f] Jj(U)}"T dU}'

o 0

'" I

nj p(u)
~

log
LIj

J,(U»)'"' ]

>(/ p(u)du)r exp
i

0
x

j

~.

l .r p(u) du
o

x

Finally we note thatJ p(u)du=xn-I/(n-l)!=/n(x), so that on combining the-
o

last inequality with (10) we obtain
x

{J
(x-u)n-2

{

n

}

}

--- log ITJj (u) du
(n-2)! j=1

it *
fz *. . .

* In (x) > In (x) exp 0
xn-I/(n-l)! ,

which reduces to (8), and completes the proof of the theorem.

The fact that the inequality (3) is weaker than (I) for the class of
symmetric, nonnegative kernels on [0, a] x [0, a]= Az follows from [2, Theorem 184]
which gives

a a a a

JJKdxdy>az exp {JJ log K dxdy/aZ}.
o 0 0 0

We conclude this paper by noting that, for this class of kernels, (I) is actually
valid for all n> 1. More generally, if v is any nonnegative function (for sim-
plicity, we assume v and K are continuous), then

(II)
a a a

(JvZ(x)dx r-I JJv (x) v(y) Kn(x, y)dxdy
000

a a

> (JJ v(x)v(y) K(x, y)dxdyr,
o 0

for all n> I; setting v (x) = I, (I) is obtained. The inequality (II) follows at
once from the matrix inequality (VTv)n-l (vTAnv) > (vTA v)n, nr

(12)
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proved by MULHOLLANDand SMITH [4], by replacing the integrals in (11) by
approximating RIEMANNsums of the form appearing in (12), then taking limits
as k- 00. In (12), the matrix A = (aij) is a k x k symmetric matrix with all
aij;;;'0, and VT= (VI' ..., Vk) has all Vi;;;'O. In the paper [1] the authors men-
tioned the inequality (12) in a note (added in proof), but apparently did not
notice that (12) implied (11), and hence also (1). .
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