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276. INEQUALITIES INVOLVING ITERATED
~ KERNELS AND CONVOLUTIONS*

Paul R. Beesack

In 1960, ATKINSON, WATTERSON and MORAN [1] conjectured that if K(x, y)
1s a nonnegative, symmetric kernel which is integrable on a square [0, @] x [0, 4],
and K,(x,y) is the n** iterate of K, then

a a

(1) avt [ [ K, pyaxdy> ([ [K(x, yydxdy ) for n=1,2, ...
00 00

This conjecture was proved for n=2 and r=3 by using appropriate matrix
inequalities and applying these inequalities to approximating RIEMANN sums for
the integrals appearing in (1); the truth of the conjecture for all n of the
form n=27 3% was then easily established by induction.

In this note we shall prove a somewhat weaker inequality than (1) which
is valid for all »>1 and for an arbitrary nonnegative kernel K. In addition,
we use the same technique to obtain a lower bound for the convolution of »n -
positive functions. However, before proceeding with this we want to point out
that (1) may be false for all n>1 if K is not symmetric. To see this, let
K(x, y)=f(x)g(y) where f, g are positive and continuous on [0, 4]. Using the

definition K, (x, y)= f Kni(x,5) K(s, y)ds for n>2, we obtain K,(x, y)=
0

= A" f(x) g(y) where A=ff(s)g(s) ds. Then for all n>2, (1) is satisfied if,
0

and only if,
@ a[f()g)ds>( [ f)ds)( [&(s)ds).
0 0 0

However, by CHEBYCHEV’S inequality [2, Theorem 236], (2) does not hold if f
and g are oppositely ordered, for example if f(x)=x, g(x)=a—x.

We shall formulate our inequality in a more general manner than that
given in (1). To this end, let u be a nonnegative measure on an o-algebra of
subsets of a set A4, with O<u(A)<<oo. For brevity, we write 4,=4x 4,

* Presented September 15, 1969 by D. S. MiITRINOVIC.
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12 P. R. Beesack

A;=AxAxA, ..., and for clarity we also write dx;dx,.--dx,, or
dx, dx, - - - dx,_,; etc. to denote integration with respect to the product measure
uxpux -+ xpu defined on subsets of A4,.

Theorem 1. Suppose that K € L, (A,) with K(x, ¥) >0 on A,. If the iterated kernels
of K are defined by

Kl(x’ J’)=K(x, y)a K’n(x9 y):f Kn—-l(x, l’) K(r’ y) dr (7122),
A

then
A3) [ EKa(x, y)dxdy>[p( A1 exp {n [log K(x, y) dx dy/p (4)}
A, Ay
Proof. Tt follows from the definition and FUBINI’S Theorem that

Ko (xq, Xn)= f (j—l_Il K(xj—, xj)) dxpy- - -dxy,

Apn—y
whence

4) f Ky(x, y)drdy=[ (H K(xy1, 7)) dxy - - -dx,.

Aty I=1
We note that each K, is defined a.e. on 4, and is in L,(4,) since K € L,(4,);

in addition K, € L(4,) since u(4)< o, so the existence of the integral in (4)
is assured. Now,

1

. n I n 1/n

lim [ S K7 (e, xj)} ~ 1K (pars x,)=-{H Koyt x,)} :

r—04+ (N jo1 Jj=1 Jj=1

by [2, Theorem 3], and the convergence is monotonic, so by (4) we obtain
n

® ] K nddy-tim | {% S K7 Gy, %) }de,,- - dx,

r—0+ Anyy r=1

= lim X,, say.
r—>0+
For O0<r<n the function x/" is convex, hence by JENSEN’S inequality [2,
Theorem 204], with weight function p=1, we have

n

Xr>lﬂ<A)l"+‘[ [ L3 Ky, x) dr -dxo/[u(A)]"ﬂ}T.

Ang B j=1
However,
(6) | Ky %) dxa- - - dro=[p()F~ [ K7 (x, y)dx dy,
Anyy Az
so that

n 1_2_n r
X>u@l " ([Krpdedy).
Az
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Finally, we use [2, Theorem 184] with p=1 which gives

f K" (x, y) dxdy 71 flog Kdx dy
A, > exp 4,
[ axdy [ axdy
Ar Az

Combining this with the preceding inequality gives, for 0<r<n,

X, >[u()I+  exp {n [log K dx dy/u>(4))
Az

so that (3) now follows from (5), and the proof is complete.

The method of proof used above is essentially that used by J. F. C. KING-
MAN in [3]. A similar proof gives the inequality

b x
() [ [Ku(x, y)dydx

b x

[ [ +y—a—xy—log K(x, )dy dx}

S (b—a)*t+! x [ nn+1)
(n+ 1)! (b—a)"+!

which is val’d for all #n> 3, when K is a square integrable, nonnegative VOLTERRA
kernel on [a, b] x [a, b], so that K(x, y)=0 for y>x. The details of the proof
are rather messy, and we only note the following facts as a help to the reader.
First, the n* iterated kernel of a VOLTERRA kernel is given by

tnh th-—1

23
Koltn t)=[ [ [ K(t, ta)- - -K(ty, t)dt,- - -dty; (n>2).
to

oty
The essential step in the proof — corresponding to equation (6)—is now

n

b b 173
ifff : "fZKr(’f’ tya) dty - - -dty dty
n =1
fo

a t

b x
=% ff(b—l—y—a—x)"“ K"(x, y) dy dx,

and this may be verified for all n>2 by induction. We also note that the same
technique may be applied to give a lower bound for K, itself, either in Theorem 1,
or for VOLTERRA kernels. The following theorem is an example of an inequality
of this type.
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Theorem 2. Let f, f>, ..., fn be nonnegative functions each of which is Lebesgue

square integrable on [0, a] for all a>0. If the convolution f fi@®) f;(x—0)dt is
0

denoted by f;* f;(x), then for all n>2, and x>0, we have

® fishr o *ful®

Xt 1 Cme1 x . n
(n—_l—)'_ exp {(n—l)x + Of(x-u) 2]gllogfj(u)du}

>

Proof. Proceeding as in Theorem 1, we have (with ¢, =0),

fixfox s % ful(ty)

[ [ ALY - falta—tadty - - dty,
00 0

[ [ s

tn 1y n

> 1,(t,) lim { f oo [ S =ty dn- - dtnynl, (tn)}’,
r— jet
0

0

4 2
where I, (t,) = f <. f dt,---dty,_,=t,""1/(n—1)! We now note that
0 0

n
In

) f . f jgl fG—t-)dty - - - dty = f (t(,;:uz);”" z S (u) du.

0 j=1
0 0

This is immediate for n=2, and follows by an easy induction for all n>2.
Hence we have

X n

ik . 1—."’_ 1 (x— u)"- n
(10) fix fyx =% fu(@)> lim [ (0] [n f S fr (u)du}
0

(n—2)! jo

Now by the arithmetic-geometric mean inequality,

% > rws> ([Il 5 (u))%,

j=1
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Hence, using [2, Theorem 184] with p(u)=(x—u)""2/(n—2)!,

[fp(u)%jél fj'(u)du}>{fp(u) [[jlillﬁ(”)}_’ll]rdu};
0

x [ ”fxp(u) % log {ﬁ f,(u)]du }

([ rw ) expj ]

0 l d[ p(u)du ]

X

Finally we note that f pydu=x"-1/(n—1)!=1,(x), so that on combining the
V]

last inequality with (10) we obtain

X

j=1

fix o % fr(x)>I(x) exp 0 x”—‘/(n—l)! ’

which reduces to (8), and completes the proof of the theorem.

The fact that the inequality (3) is weaker than (1) for the class of
symmetric, nonnegative kernels on [0, a] x [0, a]= 4, follows from [2, Theorem 184]
which gives

a a a

fdexdy>a2 exp{ff longxdy/aZ}.
00 00

We conclude this paper by noting that, for this class of kernels, (1) is actually
valid for all n>1. More generally, if v is any nonnegative function (for sim-
plicity, we assume v and K are continuous), then

(11) (fvz(x)dx)nﬁlffv(x)v(y)Kn(x, y)dxdy
0 00

[4]

> ([ [ v@v() Kx, y)dxdy)
00

n
>

for all n>1; setting v(x)=1, (1) is obtained. The inequality (11) follows at
once from the matrix inequality (vpv)"~1(vpA®V)> (vpAV)®, or

12) ( 2 vﬁ)n_l

i=

k o k k& n
v aj; v,>(z viaijvj)
=1 1

k
= i=1 j=

i

1j



16 P. R. Beesack

proved by MULHOLLAND and SMITH [4], by replacing the integrals in (11) by
approximating RIEMANN sums of the form appearing in (12), then taking limits
as k—oo. In (12), the matrix A=(a;) is a k xk symmetric matrix with all
ay;>0, and vp=(, ..., V) has all v;>0. In the paper [1] the authors men-
tioned the inequality (12) in a note (added in proof), but apparently did not
notice that (12) implied (11), and hence also (1).
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