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252. MONOTONY AND THE BEST POSSIBLE BOUNDS
OF SOME SEQUENCES OF SUMS*

DuSan D. Adamovi¢ and Milan R. Taskovi¢

0. Prof. D. S. MiTriNovi¢ has proposed in [1] the following prdblem:
“Determine some sharp enough bounds of

1 1

+ FEES n=1,2,...),
pn+l pn+2 qgn+1 ¢ )

where p and q are fixed natural numbers, and if possible, the best ones.”

By using CAUCHY-SCHWARZ’S and SCHWEIZER’s inequalities, A. Lupas, in his solution
of this problem [2], gives for the. expression

def antl 1
¢)] Sn (D, @) = — (p < g; p, ¢, n natural numbers)
k=pn+1 k .
the following estimate
. def (g—p)n+1 ((g—p) n+1][(g+p) n+2] def
2 Lo(p,q) =2 —— < Sn(p,9) < = La (P,
@ L (p, 9) @ipni2 n (D, ) 2ot l) @it D) = (P, 9)

(p < q; p, q, n natural numbers),
which follows from his more general estimate

t sE t

_— < —_ s; t natural numbers),
A(s,s+1) k=§s:—|—1 k H(s,s+1) ¢

3

where A(a, b) and H (a, b) denote arithmetic and harmonic ‘means of numbers @ and ¢
respectively.

In Luras’ solution the question of the best possible bounds was not treated. In fact
in the case when the bounds depend of p, ¢ and n, as in Lupas’ estimate, the problem o
the best possible bounds does not have a real meaning, because the unique solution for the
bounds (for both of them) is the expression Sx (p, q).

On the other hand, if S, (p, q) is regarded as a sequence determined by parameter:
p and g, and the bounds are given as the functions of p and g only, the mentioned questior
has a non trivial meaning and is without any ambiguity: the lower bound B (p, g) and the

upper bound B(p, q) are the best possible if and only if the following conditions hold:
B(p, 9)= Inf Sx (p, q), B(p, 9)= Sup Sa (p, 9).
- n>=1 nz=1

* Presented January 25, 1969 by D. S. Mitrinovic.
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42 D. D. Adamovi¢ and M. R. Taskovié

1. The best possible bounds of the sum (2), in the previous sense, for
all natural numbers p and g (with p<(q), save for a fixed set of pairs, are
given in Proposition 2. Paralelly with sums (1), we also considered the
following sums

def gn

©) (D D= >

1
— (p<4q; p, q, n natural numbers).
k=pn+1 k

The best possible bounds @ (p, 9) and B (», q) of sums (4), and in the same
sense, gives Proposition 1.

In Propositions 1 and 2 the monotony of sequences o, (p, g) and S, (p, q)
is examined too. This monotony is applied in the determination of the best
possible bounds, and is interesting by itself.

We note that a solution of this problem of Prof. D. S. MITRINOVIC,
given by us in [2], contains an error that we have made carrying over the result
obtained for S, (p, p+1) to all sequences of sums (1).

Proposition 1. For any fixed natural numbers p and q (>p), the Sequence
6, (D, q) is strictly increasing, in symbols:

(5) _Gn(p’ q) T (n:l’ 2: )

Therefore,
def

e def __
B(p, ) =0,(Ps 9) < 05 (D, q)<1n%= B(p, D

(r<gq; p, q natural numbers; n=1, 2, ...),

and these bounds are the best possible for any two fixed natural numbers
p and q (>p).

Proof. For p<gq, we have
—1

O (P D=3 0 (s s+ 1).

S=p

Hence, to prove (5), it suffices to prove that for p=1, 2, ...

©) o (pp+1) 4 (n=1,2,..),
i.e. def
@y (P) = Ops (P, p+ D) —0, (P, p+1)>0  (n,p=1,2,...).

Since

n+ 1 1 1 k

' = >0,

n pn+p+k pntk n(pn+p+k)(pn+k)

or

1 <n+1 1
m+k n pn+p+k’
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we get
(p+D) @4+ | (w+n | 1 (pthn 1 P+D@E+D |
oy (P) = —— _:____( L _)
kep@init K ppmrt kK pr+ D+ it B wpiinge k
B 1 n 1 n 1
_Pn"'P—‘f'_l——(kzan‘*‘k—k=1pn+p+k+1)
- | - p+1
pntp+l S (pnk) (pntptk+1)
- 1 __n+1 n p+1
pn+p+1 n 1 (pn+p+k)(pn+p+k+1)
__ 1! (r+D)(p+1) & 1 1
Cpntpil n IZI (pn+p+k_ pn+p+k+1>
1 @D+, n o
pn+p+1 n (pn+p+ D) (pn+p+n+1)
for p,n=1,2,....

The second part of the proposition follows immediately from the first one
and from the fact that

lim o, (p, q)=lnl.
p

Proposition 2. Let p and q (>p) be two fixed natural numbers.

1° Ifq<%p, not being p=2a+1, g=5%5a+f(@=2,3, ...; f=1,2)

(especially, if q<-15l p) , then

Sﬂ (P, ‘1) 'L (n= 1, 2, . )
In this case

g(p,q)=1n%<sn(p,q)<sl(p,q)=§(p,q) (n=1,2,..),

with the best possible bounds.
1° If g>3p, then
Sp(p,q) + (n=1,2,...).
In this case
_Bi(p9 q)=S1 (P’ q)<S1,(p, q)<ln—1q)—=l—3(17, q) (n: 1’ 2, o ')a

with the best possible bounds again.
3° For all other values of p and q (>>p), the sequence S, (p, q) is strictly
decreasing for n large enough.

Proof. To prove the parts of 1° and 2° concerning monotony, we use
the following
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Lemma. For each fixed natural number n, the expression

def
Bu (P, @) = Spei (P, )—Sa(p: )
is a strictly increasing function of q and a strictly decreasing function of p.

Indeed, it is easy to see that

q(1+1 ] P+l 1
) (P )= 3 —— > —=v2(@)+06,(p)
k=qn+2 k k=pn+1 k
and
a1 1 1 1 1
Y@= Y —F — =0g(n, n+ 1)+ — .
k=anr1 K g(n+1)+1 gn+1 g(n+1)+1 gn+l

So, in virtue of (6) and using

1 I T n n+1
[x(n+ 1)+ l_xn+ 1] ~(xn + 1)2—[x(n+ D+1]
_ n(n+1)yx2—1
G D2 [x (124 12

(x=1),

we find that y,(g) is a strictly increasing function of q. On the other 'hand,‘
and again by (6),
p(ntD 1 ‘
Su(P)=— > —=—0,(mn+1)
k=pn+1 k

is a strictly decreasing function of p, whict proves Lemma.
Now, we continue with the proof of Proposition 2. By (7),

1 1 1 1
8 n s =
® Pu(l, 3) 3n+2+3n+3+3n+4 n+1
_ 6@m+l) 22 9m+1P—(3n+2)(3n+d)
Bn+2)(3n+4) 3(m+1) 3 (B3n+2)Gn+d)(n+1)
2 1 '

-Z. =0 n=1,2,...).
3 Bn+2)Brn+4Hn+1)

After some calculation, we find

©) B (2, 5)= — 62514+ 162512 + 355012 + 604n + 72
n (2> 105+ 1) (57+2)(5n+3)(Sn+4)(5n+6)(n+1)
(n=1,2, ...).

By (8) and (9),
Sa(1,3) 4, 8,25 | (n=1,2, ...)

and this implies, for each p=1,2, ...,

10) S, (P, 3p)=Sup(1,3) +, S,(2p,5p)=Snp(2,5 | (n=1,2,...).
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By (10) and Lemma, for ¢ > 3p we have
ﬂn(P,Q)>/3n(P’ 3p)>0 (n=15 2; "‘)'
Let p<g< %p. If p=1, ¢ must be equal to 2, and the first part of 1°

is valid in this case, being

1 1 1 1 1
1,2)= + = —
Pnl:2) 2n+2 2n+3 n+1 2n+3 2n+2

<0  (n=1,2,...).

If p=2a (a natural number), then g < %-2a=5a, and by Lemma and (10),

Bn (P, D) < Bn(2a, 50)<0 (n=1,2, ...).
If p=2a+1 (a natural number) and g # Sa+1, g % Sa+ 2, then the inequality
4 > 5a+3 is impossible, for it would imply

5 5 5 5 1 5 5
=(g——pl+—p>|5a+3——Qa+D|+—p=—+—p>—p;
q (q 21)) 2p [ 2( )] 5P 5 2p 2p

hence, ¢ < 5a, i.e. by Lemma,
Bu(p, @) < Bn(a+1,5a) < f,(2a, 50) <0 n=1,2, ...).

Finally, if p=2-1+1=3 and g=5.1+2=7, then, following a somewhet
longer calculation, the expression f, (p, ¢) can be reduced to the form of a rational
function of n having all coefficients of numerator negative and all those of
-denominator positive, which means that

B,(3,6)<B8,(3,1D<O0 n=1,2, ...).
So, we have proved both first statements under 1° and 2°.

The last two statements in 1° and 2° follow from the first ones and the
fact that for p<g

n-—> oo

lim S, (p, ¢)=In-L.
p

Let the numbers p and ¢, with p< g < 3p, be fixed. For n > 2, we have

ﬂ ( ) atl 1 P 1
b, q)= -
" kg‘zanrk imipn+k
gq+1 k-1 r 1 k -1
=2i<1+—) —2—(1+—)
k=24n qn k=1pn pn
g+1 r
k=24n qn n? Kk=1pn pn n?
1 1 1 2 a1 1 1
(A (S8 o
q p/n \priz qt =y /I n? n3
_ 1 /
=q_ﬂ._+0 (L) <0
2pq n? n3

«or n large enough. This proves 3°.
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2. One of the advantages of the bounds

B> 9 B(p, 9, B(p,g and B(p, q),

that we have obtained in this paper, is that they do not depend on » and that
they are the best possible in the sense given in 0, although for some values
of p, g and n, one of both of the corresponding bounds of Luras {2] 2, (p, 9),

La(D, 9), L, (p, g) and L, (p, q) might be sharper, and ours being sharper for
other values of p, ¢ and n. Namely, we have

Proposition 3. With already introduced symbols:
1° For n large enough:

B(ps D<Ln(p, D if P<3;

B(p, )<La(p. 9), if 4>3p;

) 5
Ly (p, <B(p, 9), lfp<q<?p,
and not being
p=2a+1, g=5a+f (a=2,3,...; f=1,2).

Here the lower bound for n depends on p and q.
2° Ly (p, 3D)<B(p, 30), B(p,30)<Ly(p,3p) (p.n=1,2,..).
3° There are values for p, q and n for which
B> )<Ln (2, D> B> )>Ln (P, 9> B(p, <Lyn(p, 9),

B(p, 9)>La (2, 9).
Namely:

3°1. B(p, 9)<Ln(p, q) for n large enough, if p<q<p+2 (the lower
bound for n depends on p and q);

3°.2. B(1,2)>2,(1,2) (n=1,2,3), B, 3)>L,(1, 3) (n=1, 2);
3°3. B3, 5<L;(3,5)
3°4. if m (=1, 2,...) is fixed, then for p large enough

B(p, p+m)>Ly,(p, p+m),

provided n is large enough (the lower bound for p depends on m and the lower
bound for n on m and p); in special cases:

B(p,p+1)>L,(p,p+1) for each p with n large enough,
B(p, p+2)>L,(p, p+2) for p=2, 3, ... with n large enough.

Proof. According to the LUPAS’ estimate (3), the corresponding bounds
for the sum o, (p, q) are

_a=pn_ Z. (7, q)z(q—P)[(q+p)n+1].

1)  L.(pq) =2
ah £La (P 2 (g+p)n+1 2g(pn+1)
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By (2) and (11), for p<<g we have

n— oo

lim 2, (p, )= lim L, (p, q)=q2_p2= ! [iw(q)wl],

n—>o 2qp  2[p \p
(12) 2 1
lim L,(p, q)=2-T—2_2.2
n—>o T q+p _q__|_1
P

Statement 1°, according to the corresponding parts of Propositions 1 and 2,

follows from (12) and this double inequality

2= el (z—i> (t>1),
t+1 2 t

which can easily be proved in the usual manner.

Further, for p, n=1, 2, ..., we have:

2 1 1 1
Lyp3p=2.222r1 DB 1 1,
- dpn+2 12 2 3 4

=8,(1, 3)<S, (1, 3)=S,(p, 3p)=B(p, 3p);

. 9 _ — _
B(p’ 3p)=1n3<§=l‘1 (19 3)<Lp’n(l’ 3)=Ln (ps 31’),

since:
9 1
9 1 1 2,7-9 24,3 24 9
8 _p.e8 ; S Dot RN A il e Z.
e—ee>2,7<1+8) g 8>8 3:1n3<8,
— — 2pn+1)?
La(p,3P)=Lpu(l, 3) = (2pn+1)

(pn+1)(Bpn+ 1)’

[ (2x+1)2 :I'Z 2x(2x+1) -0 (x>0).
G+ GBx+1)]| (x+1)2@x+1)2

So we have proved statement 2°.

From p<g=p+2 it follows

and so, by Proposition 1 and (11),

1 1 _g—
B(p, 9)=01(p, q)=T+ e +;=Z+I;
220D _yim 4,5, 9,

qg-+p n— o
which proves 3°.1.
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5 5 1(5)2 1(5)3 13 25 125
) : 3

T S.1 (5y . 1 3 1325 125
e <l+g+:1%) *% =5 128 V1024

<E+i+i=l+—l—<2 > 1n2>i,
8 5 8 4 5 8

3n+1 — dn+1
T’ gn(l’ 3)=

ﬁ”(1’2)=4(n+1) 3+ 1)

+ (r=1,2, ...),
we get
B(1,2)=In2 > —Z—=Z3(l, 2)>2L,(1,2) (n=1,2,3),

B(1,3)=In3>1=24,(1, 3) > £,(1, 3) (n=1,2)
and inequalities 3°.2 are so proved.
3°. 3. follows from:

5 3
B3,5=In—, L;@3,5=—,
BG 9, LG5~
€T E TS50 3 35
If m(=1,2, ...) is fixed, then for p >m

p+m=<1+»nl)p<2p
- P
and so (Proposition 2 and (2))
— 1 1
B(p, p+m)=S;(p, p+m) =——+ -+ +——
p+1 p+rm+1
m+1  m+1 __m(2p+m)+m(2p+m)
p+m+1l p+m+1 2p(p+m) 2p(p+m)

=2p2—pm2—‘m2(m+1)+m(2p—|—m)>m(2p+m)
2p(ptm+1)(m+p) 2p(p+m) 2p(p+m)
= lim L, (p, p+m)

D>

for p large enough. This immediately implies the general statement in 3°.4.
In special cases:

- 1 1 2p+3 2p+1 2

B(p,p+1)= + = Pr prl , 2r+l
p+1l p+2 (p+1)(@+2) 2p(p+1) 2p(p+1)
2(p>—D+p '

= + lim Ly (p, p+1)
2p(p+1)(P+2) n—w

> lim L, (p, p+1)  (p=1,2, ...),

n— oo



Monotony and the best possible bounds of some sequences of sums 49

N 1 N 1 _2(p+1)+2(p+1)
p+1 p+2 p+3 p(P+2) pp+2)
y —

- p—3 + 1im Ly (p, p+2)
p(p+1)(p+2)(p+3) n—e
>LmL,(p, p+2) (»=2,3,...),

n-—>co

E(p,p‘i'2)=

which proves last two statements in 3°. 4.

3. Some remarks

3.1. Proposition 2 does not solve the problem of monotony and the best
possible bounds of the sequence S, (p, ¢) (n=1, 2, ...) for arbitrary fixed p
and ¢, since the cases when

(13) %p<q<3p, or p=2a+1, g=5a+p (a=2,3,...; B=1,2)

remain open.

Nevertheless, in virtue of statement 3° of Proposition 2, as well as
in virtue of some examined special cases, we conjecture that also in the cases
(13) sequence (1) is strictly decreasing and so has the best possible bounds

B(p, q)=1n% and  B(p, 9)=S5,(p, 9)-

3.2. The bounds of ¢,(p, g) and S,(p, q) (p<<g; n=1,2, ...) which
do not depend on n and which do not involve complicated expressions, but not
being, of course, all the best possible, can be determined in the following way.
For p<yq, n=1, 2,

qn--
o (0 @) = Q}: _1_> fﬂ:mM:ln[i_ q—>r :|>1 qg+1
k=pnt1 K t pn+1 p p(pn+l) p+1

pn+1

gn
dt

on (D, q)<f—=lni;
4 p

a oy Ty 2
an t . gn+
Su(pr = > — > f——=lnq
k=pnt1 Kk 14 pn+1
pn+1
) >inZd (g<2p)
=ln[i+——p—_q ] P
p p(pn+1) >1n;’7+2 @>2p);
" 1 1 1
+
Sn(p,q)<f—t=1n&=ln(i+ )<1nq .
t pn p pn P

4 Ppyblikacije
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Therefore, for p<q and n=1,2, ...,

1
a4 1n€-+—<an(p, q)<lni;
p+1 P
. 2
(15) min {lni, In 7+t }<Sn(p, q)<1nq~il—.
P p+1 P

Of all these bounds, the best possible ones are the upper bound in (14) and
the lower bound in (15) when g<2p.

Note that from (14) and (15), and according to

n—

lim ¢, (p, g)= lim S, (p, g9) =In % (r<9),

it follows that In-L is the best possible lower bound of the sequence o, (p, q)

4
for p<<q and of the sequence S, (p, q) for p<<qg<2p. This does not depend
on the results previously obtained.

3.3. Finally, we remark that S. BARNARD and J. M. CHILD in [3] have

given the bounds % and % for §,(3,5) (n=1,2,...). Both of them are

weaker than the bounds given in Proposition 2, which follows from the fact
that the bounds found in this paper are the best possible, and this can be
directly verified:

5 2
e<2,77<-2~=(i> => i<1ni=B(3, 5),
9 3 2 3 -

- I 1 1 37 40 2
B(3,5)=5,(, 5)=m+—+—=3—<4—:—.
4 5 6 60 60 3
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