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251. SOME INEQUALITIES FOR TRIANGLE*

Radosav Z. Dordevié

In this paper we will prove some inequallties related to the elements of
triangle. Some of them are generalisations of already known results and some
are new.

We use the following notations:

a, b, ¢ for the sides of the triangle:

F the area of the triangle;

R the radius of the circumscribed circle of the triangle;

r the radius of the inscribed circle of the triangle;
ry, Fp, e the radii of the exscribed circles corresponding to the sides
a, b, ¢

W, , Wy, W, bisectors of the angles of the triangle corresponding to the sides
a, b, c

hy, hys he the altitudes of the triangle corresponding to the sides a, b, c.

1. J. ANDERsSON (see [1]) has proved the inequalty

ad b 3 1 abe

(1'1) — < >
e Ty re 2 r

with equality if and only if the triangle is equilateral.
Inequality (1.1) is equivalent to the following

(1.2) @ (s—a) + b3 (s—b) + 3 (s—c) < abcs,

where 2s=a+b+4c¢ and with the equality if and only if the triangle is
equilateral.

We first, prove, the following
Theorem 1.1. If A is real, then

(1.3) a(s—a)+ b (s—b) + A (s—c) < % abe (@24 b2+ +2),
with equality holding only for the equilateral triangle.

* Presented January 5, 1969 by D. S. Mitrinovi¢ and R. R. Jani¢.
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Proof. Since

a*(s—a) + b (s—b) + ¢* (s—¢)
=%{_al+1_bl+1_cl+l+a’~(b+ c)+b‘(c+a)+6"1(a+b)}:

and using SCHUR’s inequality (see, for example [2])
a-1(a—b)(a—c)+ b1 (b—c) (b—a)+ 1 (c—a) (c—D)
= @14 B Mgt (b + c)—b (e + a)—cHa+ b) + abe (@2 + b2 + +2) > 0,

it immediately follows that (1.3) holds.

Since ScHUR’s inequality is reduced to equality if and only if a=b=c,
(1.3) is reduced to equality only for equilateral triangles.

This concludes the proof.

Note that inequality (1.3) is more general than (1.2) or what is the
same (1.1), and is reduced to the latter for 4=3.

Now we prove two other inequalities for the above listed elements of
triangle.

Theorem 1.2. If 1 is real, then

3
(1.4 aw,, + PPwy, + ciw, < \/ 5 abes (@202 + p20-2) 4 c2(-2))

with equality if and only if the triangle is equilateral.

Proof. Since (see. for example [3])

(1.5) Wa<\/S(5—a), wy<~/s(s—Db), w,<+/s(s—c),
we obtain
(1.6) awy+ bPwy + cw,< at /s (s—a) + B /s (s—b) + c*/s(s—c)

<\/3s(@ (s—a) +b*(s—b)+ P (s—c)).
Taking
x=a*\/s(s—a), y=b"\/s(s—b), z=c*/s(s—c),

and applying the inequality
: 7
X+y+2<(BE+2+2)r (%9, z>0),
we have by Theorem 1.1, .
(1.7)  a?(s—a)+ b (s—b)+ P (s—c) < % abe (@231 4 p20-1) | c20G-1)

and (1.6) is reduced to (1.4). ,

Since all of the inequalities (1.5), (1.6), (1.7) become equalities if and
only if a=b=c it follows that (1.4) is also reduced to an equality if and only
if a=b=c.

Theorem 1.3. If 1 is real, than
(1.8) atwg2 + w2 + w2 < % abes (A2 + b2 4 ¢2),

with equality if and only if the triangle is equilateral.
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Proof. Using inequality (1.5) and Theorem 1.1, we get
w2+ Bw + w2 < s (a* (s—a) + b* (s—b) + A (s—c))

< % abcs (@2 + b2+ ¢+-2).,

Since (1.5) and (1.4) become equalities if and only if a=b=¢, (1.8) is
equality if and only if the triangle is equilateral, what was to be proved.

Theorem 1.4. For each triangle, the inequality

(1.9) 12F < a(hy+h)+b(he+hy) +c(hy+hy) < %(a2+b2+c2) +2R£ .
v

holds, with equality holding only for the equilateral triangle.

Proof. Since hy+hy > 2\/hohe hot+hy > 2\ Hohg, hg+hy > 2\/hahs,
we get

a (hy+he) + b (ho+hg) + ¢ (bg+ hy) > 2(@~/hyhe+ b\/hohg+c \/hyhy)

3
> 6 +/abchy hyh,
‘ = 12F, .
with equality if and onmly if h,=h,=h,, that is for equilateral triangles.
This proves the first part of (1.9). -
Using the relations between arithmetic and geometric means, we obtain

2 2 » 2
(_” s ”; * hc) , b(hethg) < (éﬂ"f - “) , c(hg+hy) < (i’L_Z i h”) .

a(hb+hc) <

At most one of these inequalities may be reduced to equality for otherwise
there would exist a triangle with two obtuse angles. .. ;

Hence
a (hy+ hy)+ b (he+ hy) + ¢ (hg + hy)
< —i— (@4 b2+ 24 2 (hg2 + hy2 + he2) + 2 (hyhy + hohg + hghy)
) +2(a(hy+hy)+b(he+hy)+c(hg+hy))},
1.¢.
a(hy+he)+b (he+ hy) + ¢ (hy + hy)
< —;— {@+b2+c2+2(h2+ 2+ b2 + 2 (hyhy+hohy +hohy)}
Since (see [3])
3 2F?
haz + hbz + hcz < 'Z‘ (a2 + b2 -+ Cz) and hbhc + hcha + hahb = E—' 5
’ , r
we finally obtain
5 . 2F2
alhy+he) +b(he+hy)+ ¢ (hg+ hy) < 7(a2+b2+c2) +R—,
-

what proves the last statement.
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2. Let x, y, z be nonnegative real numbers. The mean of the order k is

definied by
1

ko yk ok K
My (x, ¥, Z)=<ZC—+yTtZ—) (k#0 and |k| <+ o),
3;—
=V xpz (k=0).

We prove the following theorems:

Theorem 2.1. For elements of a triangle inequalities

ho—r  hy—r h,,.——r) /4r2
(2.1) (h 1y Myt ry hotr Vo  *>0
3
h,—r  hy—r \/ r
22} k(ha+ra B+ by h+rc <\Vzr *<0

3

4r2 ho—r  hy—r ke “"’) \/ 2r 3
23 g < Mk(h—a:r,,’ hir hir) N7k *=9:
hold.
Equalities hold if and only if the triangle is equilateral.

Proof. By
2F=ah,=2sr, 2F=ah,=2(s—a)r, (2s=a+b+c)

we have
24 ahg—r)=b+0o)r, ahy+ry))=0+c)r,.
By (2.4) we obtain
2.5) hg—r T
ha + ra ra

Similarly we obtain equalities
(2.6) R S e WL
hy+r, 1y hot+re 1
From (2.5) and (2.6) we get
ho—r  hy—r  he—r\ r
ho+rg hy+ry hc+rc) \B/Erb_fc

@7 Mo<
By (sce [4])
3 3 3 3 3 3 3
(2.8) 3/ 271\/r2\/R < \/1rarore<3/272+\/r \/R?
we obtain inequality (2.3). Since in (2.8) equality holds if and only if the

triangle is equilateral, then in (2.3) equality also holds if and only if the tri-
angle is equilateral.
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Inequalities (2.1) and (2.2) are obtained by (2.3) and by the fact that M,
is a monotonic function for k. Since equality M, (x, ¥, z) =M (x, ¥, z) (k#0)
holds if and only if x=y=z, in (2.1) and (2. 2) equality holds if and only if
the triangle is equilateral.
Remark. Inequalities (2.1), (2.2), (2.3) hold also if in fractions, denominators permute in
an arbitrary manner.

The proof is completely identical to the proof of Theorem 2.1.

Theorem 2.2. If a#b#c+#a, inequalities

(2.9) Mk(ﬁ:ﬁ, hL_fﬁ, hc_—ﬂ‘!)<1 (k<0),
rc_ha ra_hb rb_hc

(2.10) Mk<h —rp hp—re h—””“)>1 (k>0)
rc—h ro—hy ry—h,

hold.

For k=0 equality
(2.11) Mk<h_“fﬁ’, ﬁg;’_c’ ho— ra) 1
re—hg re—hy ry—h
holds.

Proof. By equalities
2F=ah,=(c+a—b)r, and 2F=ah,=(a+b—c)r,

we obtain
(2.12) a(hy,—ry) =(c—b)r, and a(r,—hg)=(c—Db)r,.

Since, by hypothesis, a#bs£c#a and r,#h,, by (2.12) we have
(2.13) ha—ry_ 1y

rc_‘ha, re

Similarly

(2.14) hy—ro _Te g Me=Ta_Ta
Fa—Np Iy re—he 1

By (2.13) and (2.14) we obtain directly (2.11).

Since M} is a monotonic increasing function for %, inequalites (2.9) and
(2.10) follow from (2.11).

This paper in manuscript form was read by P. M. Vasi¢ and was re-
turned to me with helpful suggestions for which I thank him.
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