PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU publications de la faculte d'electrotechniaue de l'universite a belgrade

SERIJA: MATEMATIKAI FIZIKA-SERIE: MATHEMATIQUESETPHYSIQUE
№ 230 - № 241 (1968)
236. INEQUALITIES FOR SIMPLEXES*

Žarko Živanović

Generalizations of theorems 6 and 6.1 published in [1] are given in this paper.

Theorem 1. Let the simplex S_{n+1} is determined by the points $A_{1}, \ldots, A_{n}, A_{n+1}$ in n-dimensional Euclidean space, and let the simplex S_{i} is derived from the simplex S_{n+1} through the omission of point A_{i}. If A_{i}^{0} is the point of intersection of the straight line $A_{i} M$ and the simplex S_{i}, than the following inequality is valid

$$
\begin{equation*}
\sum_{i=1}^{n+1} \frac{A_{i} A_{i}^{0}}{M A_{i}} \geqslant \frac{(n+1)^{2}}{n} . \tag{1}
\end{equation*}
$$

The equality sign is valid if and only if M is the center of gravity of simplex S_{n+1}.

Proof. Let M_{i} represents the simplex which is derived from simplex S_{n+1} in such a way that the point A_{i} is substituted by the point M. If h_{i} and d_{i} are distances of points A_{i} and M from simplex S_{i}, then the following equality is valid

$$
\begin{equation*}
\frac{d_{i}}{h_{i}}=1-\frac{M A_{i}}{A_{i} A_{i}^{0}} . \tag{2}
\end{equation*}
$$

If V and V_{i} are volumes of simplex S_{n+1} and M_{i} respectively, then the following equality is valid

$$
\begin{equation*}
\frac{V_{i}}{V}=\frac{d_{i}}{h_{i}} . \tag{3}
\end{equation*}
$$

From (3) by adding in respect of i and using equality $\sum_{i=1}^{n+1} V_{i}=V$, we obtain the equality

$$
\begin{equation*}
\sum_{i=1}^{n+1} \frac{d_{i}}{h_{i}}=1 . \tag{4}
\end{equation*}
$$

The following equality follows from (2) and (4)

$$
\begin{equation*}
\sum_{i=1}^{n+1} \frac{M A_{i}}{A_{i} A_{i}^{0}}=n . \tag{5}
\end{equation*}
$$

[^0]The following inequality is valid for the arithmetic mean and harmonic mean ration for the same number of the same integers

$$
\begin{equation*}
\frac{1}{n+1} \sum_{i=1}^{n+1} \frac{A_{i} A_{i}^{0}}{M A_{i}} \geqslant \frac{n+1}{\sum_{i=1}^{n+1} \frac{M A_{i}}{A_{i} A_{i}^{0}}} \tag{6}
\end{equation*}
$$

From (5) and (6) we obtain the stated inequality which has to be proved.
Theorem 2. The following inequality is valid in simplex S_{n+1}

$$
\begin{equation*}
\sum_{i=1}^{n+1} \frac{h_{i}}{d_{i}} \geqslant(n+1)^{2} \tag{7}
\end{equation*}
$$

Proof. From the inequality

$$
\frac{1}{n+1} \sum_{i=1}^{n+1} \frac{h_{i}}{d_{i}} \geqslant \frac{n+1}{\sum_{i=1}^{n+1} \frac{d_{i}}{h_{i}}},
$$

using (4), we arrive to (7).
The inequality (7) represents of the theorem 6.1 from [1].

REFERENCE

[1] Ž. Żivanović, Certaines inégalités relatives au triangle, these Publications, № 181N 196 (1967), 69-72.

[^0]: * Received by Editors January 2, 1968 and presented Avril 20, 1968 by V. Volonec and \mathbf{Z}. Kurnik.

