PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU publications de la faculte d'Electrotechn!que de l'universite a belgrade

SERIJA: MATEMATIKAI FIZIKA-SERIE: MATHEMATIQUESETPHYSIQUE

$$
x^{3}+y^{3}-z^{3}=p x+p y-q z^{*}
$$

A. Oppenheim

1. It is known that the Diophantine equation

$$
\begin{equation*}
x^{3}-x+y^{3}-y=z^{3}-z, \tag{1}
\end{equation*}
$$

which expresses the condition that one tetrahedral number be the sum of two tetrahedral numbers has infinitely many solutions in integers and indeed infinitely many in which x, y, z are natural numbers. (See [1], [2]).

So far as I am aware no parametric solutions have been published so that the polynomial solutions, incomplete though they be, given in Theorem 1 may have some interest. These parametric solutions lead also to parametric solutions of such Diophantine equations as

$$
\begin{equation*}
x^{3}+y^{3}=z^{3}-z, \quad x^{3}+y^{3}=z^{3}+z, \quad x^{3}-x+y^{3}-y=z^{3} \tag{2}
\end{equation*}
$$

which are particular cases of the equation

$$
\begin{equation*}
x^{3}+y^{3}-z^{3}=p(x+y)-q z . \tag{3}
\end{equation*}
$$

For certain pairs of values of the integers p, q it is possible to deduce parametric solutions by means of those for $p=q=1$. On the other hand I have not been able to find for the equation

$$
\begin{equation*}
x^{3}-x+y^{3}+y=z^{3} \tag{4}
\end{equation*}
$$

any non-trivial sulution apart from ($10,9,12$), ($-10,-9,-12$). (Equation (4) has obviously three sets of trivial solutions corresponding to: (i) $x=z$, (ii) $y=z$, (iii) $x=-y$ respectively.)
2. Theorem 1. Let h be any integer, r any non-negative integer. Define θ by the equations

$$
\begin{equation*}
\cosh \theta=\frac{1}{2}(h-1)(3 h+3)^{\frac{1}{2}}, \sinh \theta=\frac{1}{2}\left\{4 h^{3}-(h+1)^{3}\right\}^{\frac{1}{2}} \tag{5}
\end{equation*}
$$

[^0](so that $\cosh ^{2} \theta-\sinh ^{2} \theta=1$). Define M, N by the equaticns
\[

$$
\begin{equation*}
N=(h-1) \frac{\cosh (2 r+1) \theta}{\cosh \theta}, \quad M=\frac{\sinh (2 r+1) \theta}{\sinh \theta} ; \tag{6}
\end{equation*}
$$

\]

define x, y, z by the relations

$$
\begin{equation*}
x=\frac{1}{2}(h+1) M+\frac{1}{2} N, \quad y=\frac{1}{2}(h+1) M-\frac{1}{2} N, z=h M . \tag{7}
\end{equation*}
$$

Then x, y, z are rational integers such that

$$
x^{3}-x+y^{3}-y=z^{3}-z .
$$

Proof. Since $4 \cosh ^{2} \theta$ is a raticnal integer and $\operatorname{since} \cosh (2 r+1) \theta / \cosh \theta$ is an integral polynomial in $4 \cosh ^{2} \theta$ it follows that N is a rational integer. Since $4 \sinh ^{2} \theta$ is a raticnal integer and since $\sinh (2 r+1) \theta / \sinh \theta$ is an integral polynomial in $4 \sinh ^{2} \theta$, it follows that M is a rational integer.

Now $(h+1) M$ and N are both odd or both even: hence x, y given by (7) are rational integers. That z is integral is plain.

Next, the definitions of M, N show that

$$
(3 h+3)^{\frac{1}{2}} N \pm\left\{4 h^{3}-(h+1)^{3}\right\}^{\frac{1}{2}} M=2\{\cosh (2 r+1) \theta \pm \sinh (2 r+1) \theta\}
$$

so that the integers N, M satisfy the equation

$$
\begin{equation*}
(3 h+3) N^{2}-\left\{4 h^{3}-(h+1)^{3}\right\} M^{2}=4 . \tag{8}
\end{equation*}
$$

But now the identity

$$
\begin{equation*}
4\left[x^{3}+y^{3}-z^{3}-x-y+z\right]=M\left[(3 h+3) N^{2}-\left\{4 h^{3}-(h+1)^{3}\right\} M^{2}-4\right] \tag{9}
\end{equation*}
$$

shows that the integers x, y, z as defined in (7) do in fact satisfy the DiophanTINE equation $x^{3}+y^{3}-z^{3}=x+y-z$. Theorem 1 is proved.
3. The special case $r=0$ gives $x=h, y=1, z=h$; a ,trivail" solution but one which nevertheless gives rise (for $|h| \geqslant 2$) to the parametric solution described. (This trivial solution was used in [2] to obtain equation (8) with infinitely many integral solutions M, N (in which $(h+1) M, N$ have the same parity) and hence (by (9)) infinitely many non-trivial integral solutions of (1).)

For $r=1$ Theorem 1 yields the polynomial solutions:

$$
\begin{align*}
& x=3 h^{4}-3 h^{3}-3 h^{2}+h+1, \\
& y=3 h^{3}-3 h^{2}-2 h+1, \tag{10}\\
& z=3 h^{4}-3 h^{3}-3 h^{2}+2 h .
\end{align*}
$$

For $r=2$ we get

$$
\begin{align*}
& x=\left(9 H^{2}+6 H\right) h+3 H+1, \\
& y=(3 H+1) h+9 H^{2}+6 H, \tag{11}\\
& z=\left(9 H^{2}+9 H+1\right) h,
\end{align*}
$$

where $H=h^{3}-h^{2}-h$.
4. Suppose that

$$
\begin{gather*}
x^{3}+y^{3}-z^{3}=x+y-z \tag{12}\\
X=t x, \quad Y=t y, \quad Z=t z .
\end{gather*}
$$

Then X, Y, Z will satisfy the Diophantine equation

$$
\begin{equation*}
X^{3}+Y^{3}-Z^{3}=p X+p Y-q Z \tag{13}
\end{equation*}
$$

provided that

$$
\begin{equation*}
t^{2}(x+y-z)=p(x+y)-q z . \tag{14}
\end{equation*}
$$

But if x, y, z are chosen as in Theorem 1, then

$$
\begin{equation*}
x+y-z=M, x+y=(h+1) M, z=h M . \tag{15}
\end{equation*}
$$

Thus (14) and (15) show that h and t are related by the equation

$$
\begin{equation*}
h(p-q)+p=t^{2} . \tag{16}
\end{equation*}
$$

We have proved in consequence
Theorem 2. Suppose that the integers p and q are such that the equation

$$
h(p-q)+p=t^{2}
$$

has infinitely many integral solutions h and $t(\neq 0)$. Then the Diophantine equation

$$
X^{3}+Y^{3}-Z^{3}=p X+p Y-q Z
$$

has infinitely many non-trivial integral solutions given by

$$
X=t x(h), Y=t y(h), Z=t z(h)
$$

where $x(h), y(h), z(h)$ are given by Theorem 1.
As an example, Theorem 2 provides parametric solutions for the equation

$$
X^{3}+Y^{3}-Z^{3}=p(X+Y-Z)-Z
$$

for any integer p : it is enough to take $h=p-t^{2}$.
But Theorem 2 fails to deal with an equation such as

$$
X^{3}+Y^{3}-Z^{3}=10(X+Y-Z)
$$

which has in fact infinitely many non-trivial integral solutions.

REFERENCES

[1] H. M. Edgar, Some remarks on the Diophantine equation $x^{3}+y^{3}+z^{3}=x+y+z$, Proc. Amer. Math. Soc. 16 (1965), $148-153$.
[2] A. Oppenheim, On the Diophantine equation $x^{3}+y^{3}+z^{3}=x+y+z$, Proc. Amer. Math. Soc. 17 (1966), $493-496$.

Author's address:
The University of Reading
Reading, England

[^0]: * Presented May 6. 1968 by D. S. Mitrinović.

