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0. The elementary symmetric functions ¢, of x,, ..., x, are defined by
(x+x) (X+x,) - (X+X)=X"+, X" T+, X724 -+,
If x,;, ..., x, are real, then the following inequality holds [1]
(H et €1 SGF (I<r<n,

with ¢,=1.
In what follows, we exclude the case in which equality occurs in (1).

1. Suppose that all x, are different. If ¢, denotes the r-th elementary sym-
metric function of x;, ..., x,—;, we have

(2) €= ;;- + X, Cr—1-

We shall consider the difference
(3) f(xn) =Cp— cr+1_cr2
as a function of the variable x,. Using (2), we get
(4) f(xn) = (cr—l + X, cr—Z) (cr+1 +x, C,)—(C, + X, Cr—l)z

=(Cr—1 G412 +(Cry €1 — €y €) Xy
-+ (;;—z CTI:—;I"—IZ) X,
By differentiation we obtain

(5) I (n) = (€ €ri1— s €) + 2 (€3 €= Cr—?) X

(6) I () =2(Cmy e— 0,12,
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From (1) we conclude that f” (x,)<<0. The only extreme pomt of fis
the maximum for

Cr— C,.+1——C, 16
2(0, 2 Cr cr— 2)

(7) Xn=—

The maximal value is

1 (¢,—, ¢ 1€
maxf(x,,) €y C,_H—C o ( r 2 r+1 l 1 r)
4 c,_zc —c— 42

Hence, we have established the inequality

- - = 1 (c —q, )2
2 —2 r+1 r—1 Cr

(8) Cr—t Cr+1—cr2<cr—1 Crt1—C " — 2

4 c,_2 e — ¢

where r<<n—1.
2. TIf all x, are positive, we shall prove that
(9) Cr— Cri1—Cr—y Cr<0'

From (1) we have

Crp €, << Crq?
Multiplying both sides by ¢, (¢,4;>0 since all x, are positive), we get
Crp Cr €y 1 <Cr—y Cp—q Cpty-
Using (1) we obtain
Cr—y Cr Crigq <cr——1 crz’ i €, Cr— Cr+1< Cra1 Cr»

g.e.d.

Since x,>0, from (1) and (9) we conclude that f’(x,)<<0, i.e., f(x,)

is decreasing for x,>0. As f(O):c_,_1 ¢,+1—C? we obtain the following ine-
quality

, = = _
Cr—1 Cr41—Cr <C,__1 C,+1—Cr2,

which is sharper than (8), since

SR CECE TN

4 Cr— C,—C,_lz
If all x, are positive, it follows that
Cr—1 Cr+1—C,2< min (icr—l icrAH_iCrz)’
1<i<n
where ‘¢, is r-th elementary symmetric function of x;, ..., X;—;, Xj1;5 ..., X,
All inequalities remain valid if not all x, are different.
We have not met these inequalities in the literature.
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Remark 1. Using the suggestion of a referee from USA, we deduce from
Creq 01162 (1<<r<<n) and (8) the following inequality:

(10) 4 (C -1 C,+1—C,2) ((’,_2 Cr_cr—12)>(cr—2 Cri1—Cr—g cr)z (r<n_ 1)

This inequality is perhaps of some interest since all the factors are
familiar expressions.

Remark 2. J. MARIK [2] gives the following result:

Let n>>3 be an integer number and let a,, @, ..., a,, with a,a,5£0,
be real numbers such that f(X):io Jl_, (,,_l:})T a;x"= is the polynomial, all
of whose zeros are real. Then S '

(11) 44y —a; Qi) (@47 — 41 8513) 2 (041 @51, —0; 05452,
for j=0,1,...,n—3.

It would be of some interest to examine the connection between of the
inequalities (10) and (11).

Remark 3. See also [3] and [4].
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