PUBLIKACIJE ELEKTROTEHNICKOG FAKULTETA UNIVERZITETA U BEOGRADU publications de la faculte d'electrotechnioue de l'universite a belgrade

INEQUALITIES FOR A SIMPLEX AND AN INTERNAL POINT*

A. Oppenheim

P is an internal point of the simplex $A_{0} A_{1} \ldots A_{n} ; x_{i}=P A_{i}: A_{i} P$ meets opposite face in $B_{i}: P B_{i}=y_{i}$. Inequalities are obtained between the sets x_{i} and y_{i}. (Carlitz for the triangle; Gabai for simplex; my results (independent of Gabai's) overlap with his.)
P is also an internal point of the simplex $B_{0} \ldots B_{n}$. Let $B_{i} P$ meet the opposite face in $C_{i}: P C_{i}=z_{i}$. Then aplication of inequalities for x_{i}, y_{i} yields inequalities for y_{i}, z_{i} and so new inequalities for x_{i}, y_{i}.

We know that
(1)

$$
t_{i}\left(x_{i}+y_{i}\right)=y_{i}, \quad 0<t_{i}<1, \quad \sum t_{i}=1 .
$$

Hence

$$
\begin{gather*}
\sum y_{i}=\sum t_{i}\left(x_{i}+y_{i}\right) \leqslant\left(\sum t_{i}\right) \max \left(x_{i}+y_{i}\right)=\max \left(x_{i}+y_{i}\right) . \\
\sum y_{i}<\sum x_{i} .(\text { CARLITZ for } n=2 .) \tag{2}
\end{gather*}
$$

No improvement on (2) is possible. (Use Carlitz's example for $n=2$. Take A_{2}, \ldots, A_{n} close to mid point of $A_{0} A_{1} ; P$ at mid point. Then $\sum x_{i}-\sum y_{i} \rightarrow 0$ so that no inequality of type $\sum x_{i} \geqslant k \sum y_{i}$ for fixed $k>1$ can be valid.)

Theorem. For all positive e_{i}

$$
\begin{equation*}
\sum x_{i} e_{i}^{2} \geqslant 2 \sum\left(y_{i} y_{j}\right)^{\frac{1}{2}} e_{i} e_{j} \tag{3}
\end{equation*}
$$

Equality if the $t_{i} / e_{i} \sqrt{y_{i}}$ are all equal.
The form $\sum x_{i} \xi_{i}{ }^{2}-2 \sum\left(y_{i} y_{j}\right)^{\frac{1}{2}} \xi_{i} \xi_{j}$ is non-negative definite.
Proof.

$$
\begin{gathered}
x_{i}=\frac{1-t_{i}}{t_{i}} y_{i}=\sum \frac{t_{j}}{t_{i}} y_{i} \quad(j \neq i) . \\
\sum x_{i} e_{i}^{2}=\sum \sum\left(\frac{t_{j}}{t_{i}} y_{i} e_{i}^{2}+\frac{t_{i}}{t_{j}} y_{j} e_{j}^{2}\right) \quad(i \neq j) \\
\geqslant 2 \sum\left(y_{i} y_{j}\right)^{\frac{1}{2}} e_{i} e_{j}
\end{gathered}
$$

[^0]Hence in particular

$$
\begin{array}{ll}
\sum \frac{x_{i}}{y_{i}} \geqslant n(n+1) & \left(e_{i}=y_{i}^{-\frac{1}{2}}\right) \tag{4}\\
\sum x_{i} \geqslant 2 \sum\left(y_{i} y_{j}\right)^{\frac{1}{2}} \quad\left(e_{i}=1\right)
\end{array}
$$

$$
\sum x_{i} y_{i} \geqslant 2 \sum y_{i} y_{j} \quad\left(e_{i}=y_{i}^{\frac{1}{2}}\right)
$$

Note also that in (3) y_{i} can be replaced by p_{i} (perpendicular from P on face opposite to A_{i}). Hence (4), (5), (6) with p_{i} in place of y_{i}.

Since the form $\sum x_{i} \xi_{i}^{2}-2 \sum\left(y_{i} y_{j}\right)^{\frac{1}{2}} \xi_{i} \xi_{j}$ is non-negative definite (indeed in general positive definite) its principal minors are positive or zero. Thus e.g.

Hence also

$$
x_{1} x_{2} x_{3}-2 y_{1} y_{2} y_{3}-x_{1} y_{2} y_{3}-x_{2} y_{3} y_{1}-x_{3} y_{1} y_{2} \geqslant 0
$$

$$
\begin{aligned}
6 y_{1} y_{2} y_{3} & \leqslant \Sigma x_{1} y_{2} y_{3} \quad\left(\text { from (3) by appropriate choice of } e_{i}\right) \\
& \leqslant x_{1} x_{2} x_{3}-2 y_{1} y_{2} y_{3}
\end{aligned}
$$

so that $x_{1} x_{2} x_{3} \geqslant 8 y_{1} y_{2} y_{3}$.
Other inequalities of this nature can be found in the same way.
Inequalities for $\Sigma\left(\frac{x_{i}}{y_{i}}\right)^{k}, k>0$.
We have $\frac{x_{i}}{y_{i}}=\sum_{j \neq i} \frac{t_{j}}{t_{i}} \geqslant \frac{n\left(\prod_{j \neq i} t_{j}\right)^{\frac{1}{n}}}{t_{i}}=n\left(\prod t_{j}\right)^{\frac{1}{n}} t_{i}{ }^{-1-\frac{1}{n}}$;

$$
\Sigma\left(\frac{x_{i}}{y_{i}}\right)^{k} \geqslant n^{k}\left(\prod t_{j}\right)^{\frac{k}{n}}\left(\prod t_{i}^{-k-\frac{k}{n}}\right)^{\frac{1}{n+1}}(n+1)=(n+1) n^{k}
$$

Thus for $k>0$

$$
\begin{equation*}
\Sigma\left(\frac{x_{i}}{y_{i}}\right)^{k} \geqslant(n+1) n^{k} \tag{7}
\end{equation*}
$$

equality if and only if P is centroid of A_{0}, \ldots, A_{n}.
[Hence $\sum \exp \left(\frac{x_{i}}{y_{i}}\right) \geqslant(n+1) e^{n}$ and so on.]
Note also that from (7)

$$
\Sigma\left(\frac{x_{i}}{p_{i}}\right)^{k} \geqslant(n+1) n^{k} \quad(k>0)
$$

where p_{i} is the perpendicular from P on face opposite A_{i}.
The simplex $B_{0} B_{1} \ldots B_{n}, P$ internal. $B_{i} P$ meets opposite face in $C_{i}: P C_{i}=z_{i}$.
Relations between x_{i}, y_{i}, z_{i}.

If $x_{i}^{\prime}=B_{i} P, y_{i}^{\prime}=P C_{i}$, then

$$
\begin{equation*}
x_{i}^{\prime}=y_{i}, \quad y_{i}^{\prime}=\frac{x_{i} y_{i}}{(n-1) x_{i}+n y_{i}} . \tag{8}
\end{equation*}
$$

Hence any statements which hold for x_{i}, y_{i} will also hold for $x_{i}^{\prime}, y_{i}^{\prime}$ and therefore for
y_{i} in place of $x_{i} ; \frac{x_{i} y_{i}}{(n-1) x_{i}+n y_{i}}$ in place of y_{i}.
Thus (4) yields

$$
\sum \frac{(n-1) x_{i}+n y_{i}}{x_{i}} \geqslant n(n+1)
$$

and so

$$
\begin{equation*}
\sum \frac{y_{i}}{x_{i}} \geqslant 1+\frac{1}{n} \tag{9}
\end{equation*}
$$

(Stronger than the inequality for $n=2$ obtained by Carlitz). Equality at centroid only.
[If we deal with homogeneous statements it is enough to replace x_{i}, y_{i} by $(n-1) x_{i}+n y_{i}$ and x_{i} respectively.]

Thus (3) yields

$$
\begin{equation*}
\sum\left[(n-1) x_{i}+n y_{i}\right] e_{i}^{2} \geqslant 2 \sum\left(x_{i} x_{j}\right)^{\frac{1}{2}} e_{i} e_{j} \tag{10}
\end{equation*}
$$

and in particular

$$
\begin{equation*}
(n-1) \sum x_{i}^{2}+n \sum x_{i} y_{i} \geqslant 2 \sum x_{i} x_{j} . \tag{11}
\end{equation*}
$$

From (7) we get, for $k>0$,

$$
\begin{equation*}
\sum\left(n-1+n \frac{y_{i}}{x_{i}}\right)^{k} \geqslant(n+1) n^{k} \tag{12}
\end{equation*}
$$

equality only at centroid.
Noteworthly also is

$$
\begin{equation*}
(n-1) \sum x_{i}+n \sum y \geqslant 2 \sum\left(x_{i} x_{j}\right)^{\frac{1}{2}} \tag{13}
\end{equation*}
$$

$\frac{\text { Inequalities for }}{} \Sigma\left(\frac{y_{i}}{x_{i}}\right)^{k}, \quad(k \geqslant 1)$.
We know that

$$
\left(\frac{1}{N} \sum_{i=1}^{N} a_{i}^{r}\right)^{\frac{1}{r}} \geqslant \frac{1}{N} \sum_{i=1}^{N} a_{i} \quad\left(a_{i}>0, r \geqslant 1\right)
$$

Hence

$$
\begin{aligned}
{\left[\frac{1}{n+1} \sum_{i=0}^{n}\left(\frac{y_{i}}{x_{i}}\right)^{k}\right]^{\frac{1}{k}} } & \geqslant \frac{1}{n+1} \sum \frac{y_{i}}{x_{i}} \quad(k \geqslant 1) \\
& \geqslant \frac{1}{n}
\end{aligned}
$$

by (9). Thus

$$
\begin{equation*}
\Sigma\left(\frac{y_{i}}{x_{i}}\right)^{k} \geqslant(n+1) n^{-k} \quad(k \geqslant 1) \tag{14}
\end{equation*}
$$

equality holds if P is centroid of simplex.
This inequality does not necessarily hold if $0<k<1$.

REFERENCES

[1] L. Carlitz, Some inequalities for a triangle, Amer. Math. Monthly, 71 (1964), 881 - 885.
[2] H. Gabai, Inequalities for simplexes, Amer. Math. Monthly, 73 (1966), 1083 - 1087.

[^0]: * Presented November 1, 1967 by D. S. Mitrinović.

