# PUBLIKACIJE ELEKTROTEHNICKKOG FAKULTETA UNIVERZITETA U BEOGRADU publications de la faculte d'electrotechnique de l'universite a belgrade 

SERIJA: MATEMATIKAI FIZIKA - SERIE: MATHEMATIQUESET PHYSIQUE
Ng 203 (1967

## SOME INEQUALITIES FOR A SPHERICAL TRIANGLE AND AN INTERNAL POINT*

## A. Oppenheim

1. There are many inequalities concerned with a triangle and an internal point, e.g. (i) inequality of Erdös-Mordell connecting the distances $(x, y, z)$ of an internal point $O$ from the vertices $A, B, C$ with the perpendicular distances ( $p, q, r$ ) from the sides of $A B C$ :

$$
\begin{equation*}
x+y+z \geqslant 2(p+q+r) \tag{1}
\end{equation*}
$$

with equality in the single case when $O$ is the centre of an equilateral triangle $A B C$; (ii) BARrow's inequalitiy

$$
\begin{equation*}
x+y+z \geqslant 2(u+v+w) \tag{2}
\end{equation*}
$$

where $u, v w$ are the distances of $O$ from $B C, C A, A B$ measured along the respective internal bisectors of the angles $B O C, C O A, A O B$; equality occurs as in (1).

Such inequalities have immediate analogues for a spherical triangle $A B C$ and an internal point $O$ provided that each of the arc distances $O A, O B, O C$ is less than a quadrant. It is enough to replace $x$ by $\tan X, p$ by $\tan P, u$ by $\tan U$ where $X$ denotes the arc $O A, P$ denotes the perpendicular arc from $O$ to $B C, U$ denotes the arc distance of $O$ to $B C$ measured along the internal bisector of the angle BOC.

The proof is obvious. Project from the centre of the (unit) sphere on the tangent plane at $O$. We obtain plane triangle $A^{\prime} B^{\prime} C^{\prime}$ with $O$ an interrnal point. Plainly $O A^{\prime}=\tan O A, \ldots$ And if $L$ is the foot of the perpendicular from $O$ on $\operatorname{arc} B C$, then $L^{\prime}$ is the foot of the perpendicular from $O$ on side $B^{\prime} C^{\prime}$. A corresponding statement is true for the feet of the internal bisectors. Hence in full the following

Theorem 1. Suppose that $O$ is an internal point of the spherical triangle ABC and that each of the arcs $O A, O B, O C$ is less than a quadrant.

Then

$$
\begin{align*}
& \tan X+\tan Y+\tan Z \geqslant 2(\tan P+\tan Q+\tan R)  \tag{3}\\
& \tan X+\tan Y+\tan Z \geqslant 2(\tan U+\tan V+\tan W), \tag{4}
\end{align*}
$$

[^0]where $P, Q, R$ are the perpendicular distances of $O$ from the sides $B C, C A, A B$ and $U, V, W$ are the distances of $O$ from these sides measured along the respective internal angle-bisectors of BOC, COA, AOB. Equality holds if and only if $O$ is the centre of an equilateral triangle $A B C$.

In [1, 2] I showed that Barrow's inequality (2) can be extended to

$$
\begin{equation*}
\lambda x+\mu y+\nu z \geqslant 2 \sum \frac{\frac{1}{y}+\frac{1}{z}}{\frac{1}{\mu y}+\frac{1}{v z}} u \tag{5}
\end{equation*}
$$

valid for all positive $\lambda, \mu, v$; equality holds if and only if each of the angles $B O C, C O A, A O B$ is $\frac{2 \pi}{3}$ and $\lambda x=\mu y=v z$. Hence

Theoreme 2. If $O$ is an internal point of the spherical triangle $A B C$ and each of the arcs $X=O A, Y=O B, Z=O C$ is less than a quadrant then for all positive $\lambda, \mu, \nu$ (such that $\lambda X, \mu Y, \nu Z$ are less than a quadrant)

$$
\begin{equation*}
\Sigma \tan \lambda X \geqslant 2 \Sigma \frac{\cot Y+\cot Z}{\cot \mu Y+\cot v Z} \tan U \tag{6}
\end{equation*}
$$

equality occurs if and only if each of the angles at $O$ is $\frac{2 \pi}{3}$ and

$$
\lambda X=\mu Y=\nu Z .
$$

Here are two deductions from (6):

$$
\begin{gather*}
\Sigma \tan \frac{X}{2} \geqslant \Sigma\left(1-\tan \frac{Y}{2} \tan \frac{Z}{2}\right) \tan U  \tag{7}\\
\Sigma \lambda X \geqslant 2 \Sigma \frac{\cot Y+\cot Z}{\frac{1}{\mu Y}+\frac{1}{\nu Z}} \tan U
\end{gather*}
$$

the first by $\lambda=\mu=\nu=\frac{1}{2}$; the second by substituting $\lambda \delta, \mu \delta, \nu \delta$ for $\lambda, \mu, \nu$ dividing by $\delta$ and letting $\delta \rightarrow+0$.

Naturally in (6), (7), (8) $U, V, W$ may be replaced by $P, Q, R$. In addition (7), (8) give rise to curious plane inequalities for a triangle and an internal point.

It is worth noting also that the ternary quadratic form

$$
\begin{equation*}
\Sigma \xi^{2} \tan X-2 \Sigma \eta \xi \tan U \tag{9}
\end{equation*}
$$

is non-negative definite ( $O$ internal point of spherical triangle $A B C$, arcs $X, Y, Z$ less than quadrants). Hence of course (4) and other inequalities. The
truth of (9) follows from the corresponding statement in the plane: the ternary quadratic form

$$
\begin{equation*}
X \xi^{2}+Y \eta^{2}+Z \zeta^{2}-2 U \eta \zeta-2 V \zeta \xi-2 W \xi_{\eta} \tag{10}
\end{equation*}
$$

is non-negative definite (as was independently observed by Mordell [3]).
For the plane figure we have

$$
\begin{equation*}
\left(\frac{1}{y}+\frac{1}{z}\right) u=2 \cos \alpha \quad(2 \alpha=B O C) \tag{11}
\end{equation*}
$$

so thant in the spherical figure

$$
\begin{equation*}
(\cot Y+\cot Z) \tan U=2 \cos \alpha . \tag{12}
\end{equation*}
$$

Since $\sum \xi^{2}-2 \sum \eta \zeta \cos \alpha(\alpha, \beta, \gamma$ acute angles sum $\pi)$ is non-negative definite (and zero if and only if $\xi: \eta: \zeta=\sin \alpha: \sin \beta: \sin \gamma$ ) both (10) and (9) follow at once.
2. Carlitz [4] has given a number of inequalities for a triangle $A B C$ and an internal point $O$, connecting $O A, O B, O C$ with $O L, O M, O N$ where $L, M, N$ are the points in which $A O, B O, C O$ cut $B C, C A, A B$ respectively. Plainly analogues of these inequalities can be written down at once for the spherical triangle by the rule already given.
3. The inequalities found so far for a spherical triangle $A B C$ and an internal point $O$ are restricted by the condition that the arcs $O A, O B, O C$ be less than a quadrant. I give now some inequalities not so resticted but to do this I must allow the sides of $A B C$ to enter.

Theorem 3. Suppose that $O$ is an internal point of the spherical triangle $A B C$. Then

$$
\begin{align*}
& \sin X+\sin Y+\sin Z \geqslant 2 \sin U \cos \frac{a}{2}+2 \sin V \cos \frac{b}{2}+2 \sin W \cos \frac{c}{2}  \tag{13}\\
& \sin X+\sin Y+\sin Z \geqslant 2 \sin P \cos \frac{a}{2}+2 \sin Q \cos \frac{b}{2}+2 \sin R \cos \frac{c}{2} \tag{14}
\end{align*}
$$

Equality occurs in (13) in any one of the following cases
(i) $A B C$ equilateral with centre $O$.
(ii) $\pi-X=Y=Z=\delta, 0<\delta<\pi$ (and then $V=W=\frac{\pi}{2}$; the other ends of $U, V, W$ are the midpoints of $B C, C A, A B$ respectively).
(iii) $X=\pi-Y=Z=\delta, \quad 0<\delta<\pi$.
(iv) $X=Y=\pi-Z=\delta, \quad 0<\delta<\pi$.

Apart from these cases there is strict inequality.

To prove (13) note that (12) leads to the equality

$$
\begin{equation*}
\left(\sin ^{2} Y+\sin ^{2} Z+2 \sin Y \sin Z \cos \alpha\right)^{\frac{1}{2}} \sin U=2 \sin Y \sin Z \cos \alpha \tag{15}
\end{equation*}
$$

(I omit the details). But

$$
\begin{aligned}
\sin ^{2} Y+\sin ^{2} Z+2 \sin Y \sin Z \cos a & \geqslant(\sin Y+\sin Z)^{2} \cos ^{2} \frac{a}{2} \\
& \geqslant 4 \sin Y \sin Z \cos ^{2} \frac{a}{2},
\end{aligned}
$$

so that

$$
2 \Sigma \sin U \cos \frac{a}{2} \leqslant 2 \Sigma(\sin Y \sin Z)^{\frac{1}{2}} \cos \alpha<\Sigma \sin X
$$

as required. Equality occurs if and only if $\alpha=\beta=\gamma=\frac{2}{3} \pi$ and

$$
\sin X=\sin Y=\sin Z
$$

whence the statement in Theorem 3.
It will be noted that we have also proved the non-negative definitess of the form

$$
\begin{equation*}
\Sigma \xi^{2} \sin X-2 \Sigma \eta \zeta \sin U \cos \frac{a}{2} \tag{16}
\end{equation*}
$$

## REFERENCES

[1] A. Oppenheim, The Erdös inequality and other inequalities for a triangle, Amer. Math. Monthly, 68 (1961), 226-230.
[2] A. Oppenheim, Neiw inequalities for a triangle and an internal point, Annali di Matematica, (4) 53 (1961), 157-164.
[3] L. J. Mordell, On geometric problems of Erdös and Oppenheim, Math. Gazette, 46 (1962), 213-215.
[4] L. Carlitz, Some inequalities for a triangle, Amer. Math. Monthly, 71 (1964), 881-885.


[^0]:    * Presented November 1, 1967 by D. S. Mitrinović.

